

Type - KF
FLAME-PROOF MOTOR
FRAME 80 TO 355
Exd

## TYPE-KF FLAME-PROOF MOTOR



## Standards

Flameproof Motors (type Ex d) conform to the following standards.

| i) Enclosure | - | IS/IEC 60079-1 |
| :--- | :--- | :--- |
| ii) Performance | - | IS 325 |
|  |  | IS 8789 / |
|  |  | IS 12615 |
| iii) Dimension | - | IS 1231 |
|  |  | IS 2223 |
| iv) Protection | - | IS 4691 |
| v) Mounting | - | IS 2253 |
| vi) Performance for mines | - | IS 3682 |

## Flameproof Environment

An explosive atmosphere is one where mixture with air under atmospheric conditions of flammable substances in the form of gas, vapour or mist, exists in such proportion that may explode due to excessive temperature, arcs or sparks.
Flameproof motors one manufactured with an enclosure constructed in such a manner that any explosion inside is not capable of igniting an explosive atmosphere outside the enclosure and the surface temperature is safe enough not to ignite the outside explosive atmosphere.

## Zones

Hazardous areas have been classified into three zones as follows:
Zone 0 in which on explosive gasair mixture is continuously present or present for long periods.
N.B. No motors may be used in Zone 0 .
Zone 1 in which an explosive gasair mixture is likely to occur in normal operation.

Zone 2 in which an explosive gasair mixture is not likely to occur in normal operation and if it occurs it will exist only for a short time. By implication an area other than
zone 0,1 or 2 is deemed to be a non-hazardous or safe area.

## Temperature

## Considerations

## Ignition Temperature

The minimum temperature at which a gas, vapour or mist ignites spontaneously at atmospheric pressure is known as the Ignition Temperature. As the gases and vapours encountered in industry have a wide spread of Ignition Temperatures, it has been agreed internationally to group together those which lie within certain temperature bond. The classification of these temperature classes is detailed in Table 1.

## Table 1

## Temperature Class

| Temperature <br> Class | MaximumSurface <br> Temperature $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: |
| T1 | 450 |
| T2 | 300 |
| T3 | 200 |
| T4 | 135 |
| T5 | 100 |
| T6 | 85 |

Standard motors are suitable for T3 temperature class.

## Flash Point

Ignition by flames or sparks is concerned with another physical characteristics of a gas mixture. This is a temperature known as Flash Point

This Flash Point of a compound is the minimum temperature of which it gives up sufficient vapour to form a flammable mixture near the surface of the compound or within the enclosure used for Flash Point determination.

Motor selection must therefore ensure that maximum surface temperature class must not exceed the Ignition Temperature of the explosive mixture.

## Flame Propagation

A further property of an explosive mixture is the ability to spread or propagate a flame, once ignited, around, through or post obstacles placed in its path. Based on the tests conducted at various international laboratories Maximum Experimental Sale Gap (MESG) for different gas/air mixtures have been obtained and the guidelines indicating gaps permitted for joints and seals for flameproof enclosure are set.
According to the international norms electrical apparatus for hazardous atmosphere is divided into following groups:

Group 1 - Coal Mines
Group II - All Hazardous Atmospheres other than Coal Mines.

## Supply Voltage and Frequency

Motors can be wound for any
voltage from 200 V to 690 V and for either 50 Hz or 60 Hz frequency with preferred voltage of 380 V , $415 \mathrm{~V}, 440 \mathrm{~V}, 525 \mathrm{~V}$ or 550 V with 50 Hz frequency.

Motors are suitable for operation $\pm 10 \%$ voltage variation and $\pm 5 \%$ frequency variation with permissible combined variation of $10 \%$.

Motors may also be manufactured for higher voltage/frequency variation on request.

## Site Conditions

Standard motors are suitable for operation of rated output with on ambient temperature upto $45^{\circ} \mathrm{C}$ and altitude not exceeding 1000
withstanding the vibration limits imposed by industrial drives.

## Mounting

Standard motors are provided with harizontal foot mounted construction (IMB3) with single cylindrical shaft extension at driven-end side. Other mounting options as per IS 2253 are available.

## Vibration Limits

All rotors are dynamically balanced with half key to ensure normal class of vibration level as per IS12075. Motors with reduced vibration level can be supplied on request.

| Ambient <br> Temp. | $50^{\circ} \mathrm{C}$ | $55^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Rated <br> outpur <br> reduced to | $95 \%$ | $90 \%$ | $85 \%$ |  |
| Altitude | 1500 m | 2000 m | 2500 m | 3000 m |
| Rated <br> outpur <br> reduced to | $95 \%$ | $91 \%$ | $87 \%$ | $79 \%$ |

meters. For higher ambient temperature and altitude following correction factors should be applied.
insulation system may be offered on request.

## Windings

The integral system of wire insulation, slot and phase insulation and the overall varnish impregnation withstands high moisture, injurious deposits and chemical contamination. The impregnation provides tracking protection together with a winding rigidity which is capable of

## O verspeed

All standard motors will withstand continuously a mechanical over speed of $120 \%$ rated speed.

## Momentary Over Load

Standard motors will withstand momentary over load of 1.6 times normal full load torque for a time not exceeding 15 seconds, provided the supply is maintained at the rated values.

## Noise Level

Noise level for KF series flameproof motors conform to the
requirement of IS12065.
Reduced noise levels may be offered on specific enquiry.

## Construction

## Frame

KF series flame proof motors have specifically been designed keeping in view the underground Mine service requirements.
The motors have rugged and robust construction using FG220 grade of grey iron castings. For foot mounted construction integrally cast foot of sufficient thickness one provided. The rugged and robust construction have been designed to withstand rough handling of motors specially in underground mines in arduous site conditions complicated by lack of space, light, cleanliness retaining the flameproofness of the enclosures. The recess for endbracket location are accurately turned with reference to stator bore, thus ensuring concentricity.
Endshields/Bearing Housing
Robust grey iron castings using FG220 or superior grade of castings are used. For frame size KF80 - KF100L bearings are directly mounted in endshield bore. For KF 112 M and above bearings are located in cartridge type housing located on endshields.

The accurately machined location spigots and bearing housing ensure accurate alignment and concentricity of rotor assembly.
Lamination
High grade low loss electrical grade steel lamination are used.

## Shaft and Rotor

Standard shafts are machined from

C45 grade of carbon steel and are machined to fine limits. Standard motors have a single cylindrical shaft extension with keyway. Standard KF series flameproof motor offer aluminium die cast rotor for entire range.
For standard motors upto frame size 225 M aluminium die cast rotor core assembly is cold pressed onto a subtantially knurled shaft. For frame sizes 250 M and upwards rotors are keyed with shaft.

Alternate arrangement of shaft extension including double cylindrical, single taper, nonstandard extension details may be offered on request.

## Cooling Fan

Cast iron cooling fan is used for entire range of motors excepting 2 -Pole motors in sizes 200 L and upwards where fabricated MS construction fan is used. All cooling fans are bi-directional.

## Bearings

M etric size medium series (C3) ball and roller bearings are used in general. The bearings are lubricated with premium grade lithium base (Shell Gadues 3) grease containing oxidation and corrosion inhibitors. Regreasing facility is provided as standard for motors with open type of bearing. The non-driven end bearing is normally located to eleminate axial movement of rotor sub-assembly. In vertical mounted motors (VI construction) the rotor weight is supported by top bearings either deep groove ball or duplex type depending on degree of axial loading to be accommodated.
Standard bearing sizes for horizontal foot mounted motors are indicated in Table below.

## Termination Arrangement

Standard foot mounted motor in frame sizes KF80-KF100L is Bearing Details Horizontal Mounting Brand-Flame Froof (Single Cylindrical)

| Frame Size | Pole | Bearing |  |
| :---: | :---: | :---: | :---: |
|  |  | D.E. | N.D.E. |
| KF 80 | 2-8P | 6204 ZZ C3 | 6204 ZZ C3 |
| KF 90L | 2-8P | 6205 ZZ C3 | 6205 ZZ C3 |
| KF 100L | 2-8P | 6206 ZZ C3 | 6206 ZZ C3 |
| KF 112M | 2-8P | 6306 ZZ C3 | 6305 ZZ C3 |
| KF 132M | 2-8P | 6308 ZZ C3 | 6306 ZZ C3 |
| KF 160L | 2-8P | 6309 ZZ C3 | 6309 ZZ C3 |
| KF 180L | 2-8P | 6310 ZZ C3 | 6310 ZZ C3 |
| KF 200L | 2 P | 6312 C3 | 6312 C3 |
| KF 200L | 4-8P | N312 C3 | 6312 C3 |
| KF 225M | 2 P | 6313 C3 | 6311 ZZ C3 |
| KF 225M | 4-8P | N313 C3 | 6311 ZZ C3 |
| KF 250M | 2P | 6315 C3 | 6313 C3 |
| KF 250M | 4-8P | N315 C3 | 6313 C3 |
| KF 280M | 2P | 6317 C3 | 6317 C3 |
| KF 280M | 4-8P | N317 | 6317 C3 |
| KF 315 | 2P | N217 C3 | 6316 C3 |
| KF 315 | 4-8P | N319 | 6316 C3 |
| KF 355 | 4-8P | N321 | 6321 C3 |

provided with a single entry terminal box. Terminal box location for KF80 is Top. For KF90L to KF355L, terminal box is located at RHS looking from driven end side for standard foot mounted motors. Terminal box can be located at LHS looking from driven end side by reversing the stator assembly.
Terminal box is made of amply dimensioned grey iron casting using FG220 or superior grade casting and conform its own flame proof enclosure capable of containing the internal explosion without transmitting the flame to the surrounding atmosphere or to the motor main enclosure.
Terminal box can be rotated in steps of $90^{\circ}$ so that cable can be terminated from any of the four directions. Unless otherwise specified standard motors are provided with a single entry terminal box suitable for DOL starting. For KF80-KF132M three terminals are provided in terminal box as standard. For KF160 KF225M three terminals are provided with single entry terminal box for DOL starting and six terminals with double entry terminal box are provided as optional arrangement. For KF250M - KF355L six terminals are always terminated in terminal box suitable for star/delta starting.
For gas group 1 i.e. for underground Mining applications cable entry arrangement with sealing box to suit PILCDWA cables is provided as standard. For gas group 1 optional plug socket entry may be provided to suit trailing type cables when specified.
For gas group IIA and IIB terminal
box is provided with gland plate suitable for customers' specified cable size.
For air stream motors popularly known as mine ventilation fan motors special termination arrangement using flying leads and conduit pipe with terminal box assembly located outside the fan casing are provided. Special termination arrangement mentioned as above are approved by ERTL/CIMFR and DGMS. O ver sized terminal box assembly to suit derated aluminium cables as required for Petro-Chemical Industries are also available on request.

## Earthing Terminals

All motors are provided with one internal earthing terminal in terminal box assembly with two external earthing terminals on frame housing.

## Certification

Entire range of KF series flame proof motors have been tested
and certified by either Electronic Regional Test Laboratory (ERTL), Kolkata or Central Institute of Mining and Fuel Research (CIMFR), Dhanbad for gas group I, IIA and IIB in accordance with IS/IEC 60079-1. Separate approvals are also available from respective statutory authorities for operation in respective gas groups for areas under their jurisdiction as per table below.

## Paint System

Standard motors are provided with synthetic enamel finish paint. All cast iron/steel components are shot blasted and fettled prior to application of red oxide primer before application of final paint.
For highly corrosive atmosphere special winding treatment is provided against specific order.
To ensure good corrosion resistance under such environment motors may be provided with chlorinated rubber based paint or epoxy based paint on request.

| Gas Group | Area | Statutory Authority |
| :--- | :--- | :--- |
|  | Underground <br> Coal Mines | Directorate General <br> of Mines Safety (DGMS), <br> Dhanbad, J harkhand. |
| IIA <br> IIB | Oil Mines | Directorate General <br> of M ines Safety (DGMS), <br> Dhanbad, J harkhand. |
| IIA | Petro-Chemical <br> Industries/ <br> Refineries | Chief Controller of <br> Explosives (CCE), Dept. <br> of Explosives, Nagpur, <br> Maharashtra |
| IIB | Factories | Directorate General <br> Factory Advice Service <br> \& Labour Institute, |
| Mumbai, Maharashtra. |  |  |

Note : All flameproof motors are covered by BIS licence.

Note: For Medium Voltage (upto 11 KV ) Flame-Proof Motors please refer to works.



Foot Mounted


| 1 | KF80 | 2-8 | 80 | $\stackrel{+0}{+0.5}$ | 19 | ${ }_{-0}^{+0}$ | 40 | 21.5 | 6 | ${ }_{-0.030}^{+0}$ | 6 | ${ }_{\text {- }}^{\text {+ }}$ +090 | 15.5 | ${ }_{-0.2}^{+0}$ | 125 | 100 | 50 | 10 | 156 | 32 | 125 | 32 | 12 | 290 | 182 | 210 | 350 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | KF90L | 2-8 | 90 | $\stackrel{+0}{+0.5}$ | 24 | ${ }_{-0.004}^{+0.009}$ | 50 | 27 | 8 | ${ }_{-0.036}^{+0}$ | 7 | ${ }_{-0.090}^{\text {- } 00}$ | 20 | -0.2 | 140 | 125 | 56 | 10 | 170 | 40 | 155 | 45 | 15 | 17 | 200 | 227 | 360 |
| 3 | KF10 | 2-8 | 100 | +0.5 | 28 | ${ }_{-0.000}^{+0.00}$ | 60 | 31 | 8 | ${ }_{-0.036}^{+0}$ | 7 | ${ }^{+0.090}$ | 24 | $\stackrel{+0}{+0.2}$ | 160 | 140 | 63 | 12 | 200 | 38 | 170 | 45 | 14 | 280 | 240 | 265 | 465 |
| 4 | KF112M | 2-8 | 112 | ${ }_{-0.5}^{+0}$ | 28 | ${ }_{-0.000}^{+0.00}$ | 60 | 31 | 8 | ${ }_{-0.036}^{+0}$ | 7 | ${ }_{-0.090}^{\text {- } 00}$ | 24 | $\stackrel{+0}{+0.2}$ | 190 | 140 | 70 | 12 | 230 | 40 | 180 | 50 | 15 | 15 | 255 | 330 | 476 |
| 5 | KF13 | 2-8 | 132 | ${ }_{-0.5}^{+0}$ | 38 | ${ }_{+0.01}^{+0.00}$ | 80 | 41 | 10 | ${ }_{-0.036}^{+0}$ | 8 | ${ }_{-0.090}^{\text {- } 00}$ | 33 | $\stackrel{+0}{+0.2}$ | 216 | 178 | 89 | 12 | 280 | 58 | 218 | 50 | 20 | 350 | 294 | 350 | 500 |
| 6 | KF | 2-8 | 160 | ${ }_{-0.5}^{+0}$ | 42 | $\stackrel{+0.018}{+0.002}$ | 110 | 45 | 12 | $\xrightarrow{-0.043}$ | 8 | -0.090 | 37 | -0.2 | 25 | 254 | 108 | 15 | 355 | 80 | 305 | 82 | 30 | 406 | 342 | 00 | 656 |
| 7 | KF180L | 2-8 | 180 | -0.5 | 48 | $\stackrel{+0.018}{+0.002}$ | 110 | 51.5 | 14 | $\xrightarrow{-0.043}$ | 9 | ${ }_{-0}^{+0.090}$ | 42.5 | ${ }_{-0.2}^{+0}$ | 279 | 279 | 121 | 15 | 370 | 80 | 327 | 82 | 30 | 450 | 395 | 425 | 706 |
| 8 | Kf | 2-8 | 200 | $\stackrel{+0}{+0.5}$ | 55 | $\stackrel{+0.030}{+0.011}$ | 110 | 59 | 16 | $\xrightarrow{-0.043}$ | 10 | ${ }_{-0.090}^{+0}$ | 49 | $\stackrel{+0}{+0.2}$ | 318 | 305 | 133 | 19 | 390 | 90 | 356 | 88 | 25 | 505 | 450 | 450 | 774 |
| 9 | KF2 | 2 | 225 | -0.5 | 55 | $\underset{+0.011}{+0.030}$ | 110 | 59 | 16 | $\xrightarrow{+0.043}$ | 10 | $\xrightarrow{+0}{ }_{-0.090}$ | 49 | $\stackrel{+0}{+0.2}$ | 35 | 311 | 149 | 19 | 448 | 95 | 368 | 95 | 30 | 548 | 515 | 480 | 860 |
| 10 | KF | 4-8 | 22 | $\stackrel{+0}{-0.5}$ | 60 | $\stackrel{\substack{+0.030 \\+0.01}}{ }$ | 140 | 64 | 18 | ${ }_{-0.043}^{+0}$ | 11 | ${ }_{\text {- }}^{\text {- }}$ +110 | 53 | $\stackrel{+0}{+0.2}$ | 35 | 311 | 149 | 19 | 448 | 95 | 368 | 95 | 30 | 548 | 51 | 480 | 890 |
| 11 | KF250 | 2 | 25 | -0.5 | 60 | ${ }_{-0.0011}^{+0.030}$ | 140 | 64 | 18 | $\xrightarrow{-0.043}$ | 11 | -0.110 | 53 | $\stackrel{+0}{+0.2}$ | 40 | 349 | 168 | 24 | 48 | 121 | 42 | 11 | 30 | 590 | 51 | 470 | 966 |
| 12 | KF | 4-8 | 250 | ${ }_{-0.5}^{+0}$ | 65 | +0.031 | 140 | 69 | 18 | $\stackrel{+0}{+0.043}$ | 11 | ${ }_{-0.110}^{\text {- } 0.0}$ | 58 | $\stackrel{+0}{+0.2}$ | 406 | 349 | 168 | 24 | 484 | 121 | 420 | 115 | 30 | 590 | 515 | 470 | 966 |
| 13 | KF | 2 | 28 | ${ }_{-1}^{+0}$ | 65 | $\stackrel{+0.030}{+0.011}$ | 14 | 69 | 18 | $\stackrel{+0}{+0.043}$ | 11 | $\xrightarrow{+0.110}$ | 58 | $\stackrel{+0}{+0.2}$ | 45 | 419 | 19 | 24 | 54 | 142 | 50 | 12 | 32 | 66 | 60 | 625 | 1078 |
| 14 | KF | 4-8 | 280 | -1 | 75 | $\stackrel{\substack{+0.030 \\+0.012}}{ }$ | 140 | 79.5 | 20 | ${ }_{-0.052}^{\text {+0 }}$ | 12 | ${ }_{-0.110}^{+0}$ | 67.5 | $\stackrel{+0}{+0.2}$ | 457 | 41 | 190 | 24 | 540 | 142 | 500 | 120 | 32 | 660 | 600 | 625 | 籼 |
| 15 | KF315M | 2 | 315 | ${ }_{-1}$ | 65 | $\stackrel{+0.030}{+0.011}$ | 140 | 69 | 18 | $\stackrel{+0}{+0.043}$ | 11 | ${ }_{-0.110}^{+0}$ | 58 | $\stackrel{+0}{+0.2}$ | 508 | 457 | 216 | 28 | 600 | 170 | 540 | 13 | 36 | 72 | 612 | 645 | 1173 |
| 16 | KF315 | 4-8 | 315 | -1 | 80 | $\stackrel{+0.030}{+0.011}$ | 170 | 85 | 22 | ${ }_{-0.052}^{+0}$ | 14 | -0.110 | 71 | $\stackrel{+0}{+0.2}$ | 508 | 457 | 216 | 28 | 600 | 170 | 540 | 13 | 36 | 72 | 612 | 64 | 1203 |
| 17 | 315 | 2 | 315 | ${ }_{-1}$ | 65 | $\stackrel{+0.030}{+0.011}$ | 14 | 69 | 18 | $\stackrel{+0}{+0.043}$ | 11 | ${ }_{\text {- }}^{\text {- }}$ +110 | 58 | $\stackrel{+0}{+0.2}$ | 508 | 508 | 216 | 28 | 600 | 170 | 591 | 13 | 36 | 72 | 612 | 45 | 1273 |
| 18 | KF315L | 4-8 | 315 | ${ }_{-1}$ | 80 | $\stackrel{+0.030}{+0.011}$ | 170 | 85 | 22 | -0.052 | 14 | ${ }_{-0.110}^{\text {- }}$ | 71 | -0.2 | 508 | 508 | 216 | 28 | 600 | 170 | 591 | 135 | 36 | 722 | 612 | 645 | 1303 |
| 19 | KF35 | 4-8 | 355 | -1 | 95 | $\stackrel{+0.035}{+0.013}$ | 170 | 10 | 25 | -0.052 | 14 | -0.110 | 86 | $\stackrel{+0}{+0.2}$ | 610 | 560 | 254 | 28 | 720 | 140 | 650 | 160 | 45 | 820 | 740 | 35 | 1440 |
| 20 | KF355L | 4-8 | 355 | ${ }_{-1}$ | 95 | $\stackrel{+0.035}{+0.013}$ | 170 | 100 | 25 | -0.052 | 14 | ${ }_{\text {- }}^{\text {- } 0.110}$ | 86 | $\stackrel{+0}{+0.2}$ | 610 | 630 | 254 | 28 | 720 | 140 | 720 | 16 | 45 | 820 | 74 | 635 | 157 |
|  | FRAME | N0. OF | HICEN | HEIGHT) |  | -DIA | $\underset{\text { SHAFT }}{\text { E }}$ |  |  | F |  | G |  | G | FIX | G DIM | MENSIO |  |  |  |  |  |  |  |  |  |  |
| PART NO | SIZE |  |  | TOL |  |  | EXTN | GA | NOM | TOL | NOM | TOL | NOM | TOL | A | B | c | K | AB | AA | BB | BA | HA | HD | AC | AD | L |


Flange Mounted

| 1 | KF80 | 2-8 | 19 | ${ }_{-0.009}^{+0.09}$ | 40 | 21.5 | 6 | ${ }_{\text {- }}^{\text {- }}$ +030 | 6 | ${ }^{-0.090}$ | 15.5 | ${ }_{-0.2}^{+0}$ | 182 | 210 | 385 | 10 | 430 | 152 | 165 | 130 |  | 200 | 12 | 3.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | KF9 | 2-8 | 24 | ${ }_{-0.009}^{+0.009}$ | 50 | 27 | 8 | ${ }_{-0.036}^{+00}$ | 7 | $\xrightarrow{+0.090}$ | 20 | ${ }_{-0.2}^{+0}$ | 200 | 227 | 385 | 10 | 442 | 147 | 165 | 130 | ${ }_{-0.011}^{+0.011}$ | 200 | 12 | 3.5 | 304 |
| 3 | KF100L | 2-8 | 28 | 009 | 60 | 31 | 8 | ${ }_{-0.036}^{++06}$ | 7 | $\xrightarrow{+0.000}$ | 24 | ${ }_{-0.2}^{+0}$ | 240 | 265 | 505 | 11 | 495 | 181 | 215 | 180 | ${ }_{-0.011}^{+0.014}$ | 250 | 15 | 4 | 360 |
| 4 | KF112M | 2-8 | 28 | ${ }_{-0.009}^{+0.009}$ | 60 | 31 | 8 | ${ }_{\text {- }}^{0.036}$ | 7 | $\xrightarrow{\text {-0.090 }}$ | 24 | ${ }_{-0.2}^{+0}$ | 255 | 330 | 495 | 11 | 648 | 196 | 215 | 180 | ${ }_{-0.014}^{+0.014}$ | 250 | 15 | 4 | 396 |
| 5 | KF132M | 2-8 | 38 | $\xrightarrow{+0.0002}$ | 80 | 41 | 10 | $\xrightarrow{+0.036}$ | 8 | ${ }_{-0.090}^{+0}$ | 33 | ${ }_{-0.2}^{+0}$ | 294 | 350 | 525 | 12 | 675 | 203 | 265 | 230 | ${ }_{-0.016}^{+0.015}$ | 300 | 15 |  | 428 |
| 6 | 160 | 2-8 | 42 | +018 | 110 | 45 | 12 | $\xrightarrow{+0.043}$ | 8 | -0.090 | 37 | $\stackrel{+0}{\text {-0.2 }}$ | 342 | 400 | 692 | 13 | 772 | 271 | 300 | 250 | ${ }_{-0.013}^{+0.016}$ | 350 | 19 | 5 | 472 |
| 7 | 30L | 2-8 | 48 | $\stackrel{+0.018}{+0.028}$ | 110 | 51.5 | 14 | $\xrightarrow{+0.043}$ | 9 | -0.090 | 42.5 | ${ }_{-0.2}^{+0}$ | 395 | 425 | 736 | 13 | 792 | 290 | 300 | 250 | ${ }_{-0.013}^{+0.016}$ | 350 | 19 |  | 518 |
| 8 | KF200L | 2-8 | 55 | $\stackrel{+0.031}{+0.011}$ | 11 | 59 | 16 | ${ }_{\text {- }}^{\text {- }}$-043 | 10 | -t.090 | 49 | ${ }_{-0.2}^{+0}$ | 450 | 450 | 847 | 15 | 880 | 329 | 350 | 300 | ${ }_{-0.018}^{+0.018}$ | 400 | 19 |  | 60 |
| 9 | KF225M | 2 | 55 | +0.031 | 110 | 59 | 16 | ${ }_{-0.043}^{+0}$ | 10 | -t.090 | 49 | -0.2 | 515 | 480 | 925 | 16 | 870 | 368 | 400 | 350 | ${ }_{-0.018}^{+0.018}$ | 450 | 19 |  | 638 |
| 10 | KF225M | $4-8$ | 60 | $\stackrel{+0.031}{+0.11}$ | 140 | 64 | 18 | ${ }_{-0.043}^{+0}$ | 11 | -0.10 | 53 | ${ }_{-0.2}^{+0}$ | 515 | 480 | 955 | 16 | 900 | 369 | 400 | 350 | ${ }_{-0.018}^{+0.018}$ | 450 | 19 | 5 | 638 |
| 11 | 250 | 2 | 60 | ${ }_{-0.031}^{+0.031}$ | 140 | 64 | 18 | -0.043 | 11 | -0.110 | 53 | ${ }_{-0.2}^{+0}$ | 515 | 左 | 103 | 18 | 1062 | 412 | 500 | 450 | ${ }_{-0.020}^{+0.020}$ | 550 | 19 | 5 | 70 |
| 12 | KF250M | $4-8$ | 65 | +0.030 | 140 | 69 | 18 | ${ }_{\text {- }}^{\text {-0.043 }}$ | 11 | -0.110 | 58 | -0.2 | 515 | 470 | 10 | 18 | 106 | 412 | 500 | 450 | ${ }_{-0.020}^{+0.020}$ | 550 | 19 | 5 | 704 |
| 13 | KF280M | 2 | 65 | $\xrightarrow{+0.031}$ | 140 | 69 | 18 | ${ }_{\text {colo }}^{\text {-043 }}$ | 11 | -0.110 | 58 | ${ }_{\text {-0.2 }}$ | 600 | 625 | 112 | 18 | 113 | 441 | 500 | 450 |  | 550 | 19 | 5 | 752 |
| 14 | KF280 | 4-8 | 75 | $\xrightarrow{+0.031}$ | 140 | 79. | 20 | ${ }_{\text {-t. }}^{\text {- } 052}$ | 12 | -0.10 | 67.5 | ${ }_{-0.2}^{\text {-0, }}$ | 600 | 625 | 1120 | 18 | 1130 | 441 | 500 | 450 | -0.020 | 550 | 19 | 5 | 752 |
| 15 | KF315M | 2 | 65 | ${ }_{\text {+0,0.030 }}^{+0.0}$ | 140 | 69 | 18 | $\stackrel{\text { +0. }}{\text { +043 }}$ | 11 | ${ }^{+}+110$ | 58 | $\stackrel{+0}{\text {-0.2 }}$ | 612 | 645 | 1224 | 22 | 1171 | 495 | 600 | 550 | ${ }_{-0.022}^{+0.022}$ | 660 | 24 | 6 | 806 |
| 16 | KF315M | 4-8 | 80 | ${ }_{\text {coiolo }}^{+0.030}$ | 170 | 85 | 22 | ${ }_{\text {- }}^{\text {-0.052 }}$ | 14 | -0.10 | 71 | -0.2 | 612 | 645 | 1254 | 22 | 1201 | 495 | 600 | 550 | ${ }_{-0.022}^{+0.022}$ | 660 | 24 | 6 | 806 |
| 17 | KF315L | 2 | 65 | ${ }_{\text {+0,0.030 }}^{+0.012}$ | 140 | 69 | 18 | ${ }^{\text {- }}$-043 | 11 | -0.110 | 58 | ${ }_{-0.2}^{+0}$ | 612 | 645 | 13 | 22 | 117 | 495 | 600 | 550 | -0.022 | 660 | 24 |  | 806 |
| 18 | KF315L | 4-8 | 80 | .011 | 17 | 85 | 22 | -.0.052 | 14 | - 0.110 | 71 | -0. | 612 | 64 | 1355 | 22 | 1201 | 495 | 600 | 550 | ${ }_{-0.022}^{+0.022}$ | 660 | 24 | 6 | 806 |
| 19 | KF355M | 4-8 | 95 | +0.013 | 170 | 100 | 25 | ${ }^{\text {a }}$ | 14 | - 0.10 | 84 | $\stackrel{+0}{\text {-0.2 }}$ | 740 | 635 | 1453 | 25 |  | 568 | 740 | 88 | -0.025 | 800 | 24 |  | 1260 |
| 20 | KF355L | $4-8$ | 95 | + +0.035 | 170 | 100 | 25 | $\xrightarrow{\text {-. } 052}$ | 14 | 0.110 | 84 |  | 740 | 635 | 1583 | 25 |  | 568 | 740 |  | ${ }_{-0.025}^{+0.025}$ | 80 | 24 | 6 | 1260 |
|  | FRAME | N0. OF |  | DIA |  |  |  | F |  | GD |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| art no | SIIE | POLE | Nom | TOL | ExtN | GA |  |  |  |  |  |  | AC | AD | L | LA | LC | LD | M | Nom | TOL | P | в |  |  |


Flange Mounted




Paharpur Works 58, Taratala Road
Kolkata - 700024
Ph: 913344030400
Fax: 91332469 5369/8530

AEI Works 1, Taratala Road Kolkata - 700024 Ph: 913344030500 Fax: 913324696988

