

Type - KF FLAME-PROOF MOTOR FRAME 80 TO 355 Ex d

A Regal Brand

www.regalbeloit.com

TYPE-KF FLAME-PROOF MOTOR

Standards

Flameproof Motors (type Ex d) conform to the following standards.

i) Enclosure	-	IS/IEC 60079-1
ii) Performance	-	IS 325
		IS 8789 /
		IS 12615
iii) Dimension	-	IS 1231
		IS 2223
iv) Protection	-	IS 4691
v) Mounting	-	IS 2253
vi) Performance for mines	-	IS 3682

Flameproof Environment

An explosive atmosphere is one where mixture with air under atmospheric conditions of flammable substances in the form of gas, vapour or mist, exists in such proportion that may explode due to excessive temperature, arcs or sparks.

Flameproof motors one manufactured with an enclosure constructed in such a manner that any explosion inside is not capable of igniting an explosive atmosphere outside the enclosure and the surface temperature is safe enough not to ignite the outside explosive atmosphere.

Zones

Hazardous areas have been classified into three zones as follows :

Zone 0 in which on explosive gasair mixture is continuously present or present for long periods.

N.B. No motors may be used in Zone 0.

Zone 1 in which an explosive gasair mixture is likely to occur in normal operation.

Zone 2 in which an explosive gasair mixture is not likely to occur in normal operation and if it occurs it will exist only for a short time. By implication an area other than zone 0, 1 or 2 is deemed to be a non-hazardous or safe area.

Temperature Considerations

Ignition Temperature

The minimum temperature at which a gas, vapour or mist ignites spontaneously at atmospheric pressure is known as the Ignition Temperature. As the gases and vapours encountered in industry have a wide spread of Ignition Temperatures, it has been agreed internationally to group together those which lie within certain temperature bond. The classification of these temperature classes is detailed in Table 1.

Table 1

Temperature Class

Temperature Class	MaximumSurface Temperature (°C)
T1	450
T2	300
T3	200
T4	135
T5	100
T6	85

Standard motors are suitable for T3 temperature class.

Flash Point

Ignition by flames or sparks is concerned with another physical characteristics of a gas mixture. This is a temperature known as Flash Point

This Flash Point of a compound is the minimum temperature of which it gives up sufficient vapour to form a flammable mixture near the surface of the compound or within the enclosure used for Flash Point determination.

Motor selection must therefore ensure that maximum surface temperature class must not exceed the Ignition Temperature of the explosive mixture.

Flame Propagation

A further property of an explosive mixture is the ability to spread or propagate a flame, once ignited, around, through or post obstacles placed in its path. Based on the tests conducted at various international laboratories Maximum Experimental Sale Gap (MESG) for different gas/air mixtures have been obtained and the guidelines indicating gaps permitted for joints and seals for flameproof enclosure are set.

According to the international norms electrical apparatus for hazardous atmosphere is divided into following groups :

Group 1 – Coal Mines

Group II – All Hazardous Atmospheres other than Coal Mines.

Supply Voltage and Frequency

Motors can be wound for any

voltage from 200V to 690V and for either 50 Hz or 60 Hz frequency with preferred voltage of 380V, 415V, 440V, 525V or 550V with 50 Hz frequency.

Motors are suitable for operation $\pm 10\%$ voltage variation and $\pm 5\%$ frequency variation with permissible combined variation of 10%.

Motors may also be manufactured for higher voltage/frequency variation on request.

Site Conditions

Standard motors are suitable for operation of rated output with on ambient temperature upto 45°C and altitude not exceeding 1000 withstanding the vibration limits imposed by industrial drives.

Mounting

Standard motors are provided with harizontal foot mounted construction (IMB3) with single cylindrical shaft extension at driven-end side. Other mounting options as per IS 2253 are available.

Vibration Limits

All rotors are dynamically balanced with half key to ensure normal class of vibration level as per IS12075. Motors with reduced vibration level can be supplied on request.

Ambient Temp.	50°C	55°C	60°C	
Rated outpur reduced to	95%	90%	85%	
Altitude	1500m	2000m	2500m	3000m
Rated outpur reduced to	95%	91%	87%	79%

meters. For higher ambient temperature and altitude following correction factors should be applied.

insulation system may be offered on request.

Windings

The integral system of wire insulation, slot and phase insulation and the overall varnish impregnation withstands high moisture, injurious deposits and chemical contamination. The impregnation provides tracking protection together with a winding rigidity which is capable of

Overspeed

All standard motors will withstand continuously a mechanical over speed of 120% rated speed.

Momentary Over Load

Standard motors will withstand momentary over load of 1.6 times normal full load torque for a time not exceeding 15 seconds, provided the supply is maintained at the rated values.

Noise Level

Noise level for KF series flameproof motors conform to the

requirement of IS12065.

Reduced noise levels may be offered on specific enquiry.

Construction

Frame

KF series flame proof motors have specifically been designed keeping in view the underground Mine service requirements.

The motors have rugged and robust construction using FG220 grade of grey iron castings. For foot mounted construction integrally cast foot of sufficient thickness one provided. The rugged and robust construction have been designed to withstand rough handling of motors specially in underground mines in arduous site conditions complicated by lack of space, light, cleanliness retaining the flameproofness of the enclosures. The recess for endbracket location are accurately turned with reference to stator bore, thus ensuring concentricity.

Endshields/Bearing Housing

Robust grey iron castings using FG220 or superior grade of castings are used. For frame size KF80 – KF100L bearings are directly mounted in endshield bore. For KF 112M and above bearings are located in cartridge type housing located on endshields.

The accurately machined location spigots and bearing housing ensure accurate alignment and concentricity of rotor assembly.

Lamination

High grade low loss electrical grade steel lamination are used.

Shaft and Rotor

Standard shafts are machined from

C45 grade of carbon steel and are machined to fine limits. Standard motors have a single cylindrical shaft extension with keyway. Standard KF series flameproof motor offer aluminium die cast rotor for entire range.

For standard motors upto frame size 225M aluminium die cast rotor core assembly is cold pressed onto a subtantially knurled shaft. For frame sizes 250M and upwards rotors are keyed with shaft.

Alternate arrangement of shaft extension including double cylindrical, single taper, nonstandard extension details may be offered on request.

Cooling Fan

Cast iron cooling fan is used for entire range of motors excepting 2-Pole motors in sizes 200L and upwards where fabricated MS construction fan is used. All cooling fans are bi-directional.

Bearings

Metric size medium series (C3) ball and roller bearings are used in general. The bearings are lubricated with premium grade lithium base (Shell Gadues 3) grease containing oxidation and corrosion inhibitors. Regreasing facility is provided as standard for motors with open type of bearing. The non-driven end bearing is normally located to eleminate axial movement of rotor sub-assembly. In vertical mounted motors (VI construction) the rotor weight is supported by top bearings either deep groove ball or duplex type depending on degree of axial loading to be accommodated.

Standard bearing sizes for horizontal foot mounted motors are indicated in Table below.

Termination Arrangement

Standard foot mounted motor in frame sizes KF80-KF100L is

Bearing Details Horizontal Mounting Brand-Flame Froof (Single Cylindrical)

		Bear	ring
Frame Size	Pole	D.E.	N.D.E.
KF 80	2-8P	6204 ZZ C3	6204 ZZ C3
KF 90L	2-8P	6205 ZZ C3	6205 ZZ C3
KF 100L	2-8P	6206 ZZ C3	6206 ZZ C3
KF 112M	2-8P	6306 ZZ C3	6305 ZZ C3
KF 132M	2-8P	6308 ZZ C3	6306 ZZ C3
KF 160L	2-8P	6309 ZZ C3	6309 ZZ C3
KF 180L	2-8P	6310 ZZ C3	6310 ZZ C3
KF 200L	2P	6312 C3	6312 C3
KF 200L	4-8P	N312 C3	6312 C3
KF 225M	2P	6313 C3	6311 ZZ C3
KF 225M	4-8P	N313 C3	6311 ZZ C3
KF 250M	2P	6315 C3	6313 C3
KF 250M	4-8P	N315 C3	6313 C3
KF 280M	2P	6317 C3	6317 C3
KF 280M	4-8P	N317	6317 C3
KF 315	2P	N217 C3	6316 C3
KF 315	4-8P	N319	6316 C3
KF 355	4-8P	N321	6321 C3

provided with a single entry terminal box. Terminal box location for KF80 is Top. For KF90L to KF355L, terminal box is located at RHS looking from driven end side for standard foot mounted motors. Terminal box can be located at LHS looking from driven end side by reversing the stator assembly.

Terminal box is made of amply dimensioned grey iron casting using FG220 or superior grade casting and conform its own flame proof enclosure capable of containing the internal explosion without transmitting the flame to the surrounding atmosphere or to the motor main enclosure.

Terminal box can be rotated in steps of 90° so that cable can be terminated from any of the four directions. Unless otherwise specified standard motors are provided with a single entry terminal box suitable for DOL starting. For KF80 - KF132M three terminals are provided in terminal box as standard. For KF160 -KF225M three terminals are provided with single entry terminal box for DOL starting and six terminals with double entry terminal box are provided as optional arrangement. For KF250M - KF355L six terminals are always terminated in terminal box suitable for star/delta starting.

For gas group 1 i.e. for underground Mining applications cable entry arrangement with sealing box to suit PILCDWA cables is provided as standard. For gas group 1 optional plug socket entry may be provided to suit trailing type cables when specified.

For gas group IIA and IIB terminal

box is provided with gland plate suitable for customers' specified cable size.

For air stream motors popularly known as mine ventilation fan motors special termination arrangement using flying leads and conduit pipe with terminal box assembly located outside the fan casing are provided. Special termination arrangement mentioned as above are approved by ERTL/CIMFR and DGMS. Over sized terminal box assembly to suit derated aluminium cables as required for Petro-Chemical Industries are also available on request.

Earthing Terminals

All motors are provided with one internal earthing terminal in terminal box assembly with two external earthing terminals on frame housing.

Certification

Entire range of KF series flame proof motors have been tested

and certified by either Electronic Regional Test Laboratory (ERTL), Kolkata or Central Institute of Mining and Fuel Research (CIMFR), Dhanbad for gas group I, IIA and IIB in accordance with IS/IEC 60079-1. Separate approvals are also available from respective statutory authorities for operation in respective gas groups for areas under their jurisdiction as per table below.

Paint System

Standard motors are provided with synthetic enamel finish paint. All cast iron/steel components are shot blasted and fettled prior to application of red oxide primer before application of final paint.

For highly corrosive atmosphere special winding treatment is provided against specific order.

To ensure good corrosion resistance under such environment motors may be provided with chlorinated rubber based paint or epoxy based paint on request.

Gas Group	Area	Statutory Authority
I	Underground Coal Mines	Directorate General of Mines Safety (DGMS), Dhanbad, Jharkhand.
IIA & IIB	Oil Mines	Directorate General of Mines Safety (DGMS), Dhanbad, Jharkhand.
IIA	Petro-Chemical Industries/ Refineries	Chief Controller of Explosives (CCE), Dept. of Explosives, Nagpur, Maharashtra
IIB	Factories	Directorate General Factory Advice Service & Labour Institute, Mumbai, Maharashtra.

Note : All flameproof motors are covered by BIS licence.

Note : For Medium Voltage (upto 11KV) Flame-Proof Motors please refer to works.

	395	415	455	592	650	736	762	788	806	836	1012	1012	1070	1070	1120	1150	120	1150				J	
						-										-	-		ŀ0	0,		Ē	
) 350	7 360	5 465	976	500) 656	5 706) 774	860	890	996 (996	5 1078	5 1078	5 1173	5 1203	5 1273	5 1303	5 1440	5 1570		Γ	
SECTION ON'X.X'	210	227	265	330	350	400	425	450	480	480	470	470	625	625	645	645	645	645	635	635		AD	
GD	182	200	240	255	294	342	395	450	515	515	515	515	600	600	612	612	612	612	740	740		AC	
4HOLES,K-DA	290	317	280	315	350	406	450	505	548	548	590	590	660	660	722	722	722	722	820	820		HD	
	12	15	14	15	20	30	30	25	30	30	30	30	32	32	36	36	36	36	45	45		HA	
HARDEN IT I	32	45	45	50	50	82	82	88	95	95	115	115	120	120	135	135	135	135	160	160		BA	
	125	155	170	180	218	305	327	356	368	368	420	420	500	500	540	540	591	591	650	720		BB	
	32	40	38	40	58	80	80	90	95	95	121	121	142	142	170	170	170	170	140	140		AA	
	156	170	200	230	280	355	370	390	448	448	484	484	540	540	600	600	600	600	720	720		AB	
- −− H	10	10	12	12	12	15	15	19	19	19	24	24	24	24	28	28	28	28	28	28	SNO	К	
ан	50	56	63	70	89	108	121	133	149	149	168	168	190	190	216	216	216	216	254	254	ENSIC	C	R -I
	100	125	140	140	178	254 1	279 1	305 1	311 1	311 1	349 1	349 1	419 1	419 1	457 2	457 2	508 2	508 2	560 2	630 2	DIMI	В	<u> </u>
d those	125 1		160 1	190 1	216 1	254 2	279 2	318 3	356 3	356 3	406 3	406 3	457 4	457 4	508 4	508 4	508 5	508 5	610 5	610 6	FIXING DIMENSIONS	A	AS PER GAS
nute and a second secon		$^{+0}_{-0.2}$					$^{+0}_{-0.2}$ 2		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.2 0.2	$^{+0}_{-0.2}$ 4	$^{+0}_{-0.2}$ 4	$^{+0}_{0.2}$ 4	$^{+0}_{0.2}$ 4	0.2 0.2			•		+0 -0.2 6		TO	PE
Foot Mounted	15.5	20	4	24	33	37	42.5	49	49	53	53	58	58	67.5	58	. 1	58	1	86	86	ტ	NOM TOL NOM TOL NOM TOL	AS A
Hoot			-060 -090				$^{+0}_{(090)}4$	$^{+0}_{0.090}$ 4	-+0 0.090 4	110 5	+0 -110	0	$^{+0}_{0.110}$	⁻⁰ 110 6	110	$\frac{1}{100}$	110	110 7	110 8	110 8		N TC	TERMINATION
	+0	+0-	+-0- -0-	-0- -0-	+ 0 ⁻	*-0- -0-	+0-	+0- -0-	+.0 ⁻	1 -0.+	1 -0.	1 -0.	1 -0.+	2 <u>-</u> 0.+	1 -0.	4 _0.	$1^{-0.1}$	4 -0.	$4^{-0.1}$	4 _0.	GD	M T(NAT
	030 (-0.036	036	036 7	0 36 £	0 043 8	0	$^{+0}_{-0.043}$ 1	$^{+0}_{-0.043}$ 1	$^{+0}_{-0.043}$ 1	$^{+0}_{-0.043}$ 1	$^{+0}_{-0.043}$ 1	$^{+0}_{0.043}$ 1	$^{+0}_{-0.052}$ 1	$^{+0}_{-0.043}$ 1	$^{+0}_{-0.052}$ 1	$^{+0}_{-0.043}$ 1	$\frac{0}{152}$ 1	$^{0}_{152}$ 1	$^{0}_{152}$ 1		DT NC	ZMI
∀H╶╼┤ ╼────H' ─────	-0.0	-0.0	-0.0	-0.0	-0-0	-0.0+	-0.0- 1	-0.0-	-0.0 ⁺	8 -0.0-	-0.0 ⁺	-0.0-	-0.0 ⁺	0.0-	-0.0-	-0-0+	-0.0 ⁺	-0.052	-0-0+		ц	M TC	ΤH
	5 6	∞	8	8	10	12	5 14	16	16	18	18	18	18	5 2(18	22	18	22	0 25	0 25			
	21.5	27	31	31	41) 45	51.5	59	59) 64) 64	69 (69 (79.5	69 () 85	69 () 85	100) 100		N GA	
	9 40		09	09	80	§ 110	2 110	$\frac{1}{1}$ 110	$\frac{1}{1}$ 110	$\frac{1}{1}$ 140	140	$\frac{1}{1}$ 140	$\frac{1}{1}$ 140	$\frac{0}{1}$ 140	$\frac{1}{1}$ 140	1 170	$\frac{1}{1}$ 140	$\frac{1}{1}$ 170	3 170	3 170	E		
	+0.009 -0.004	+0.009 -0.004	+0.004	+0.009 -0.004	$^{+0.018}_{-0.002}$	+0.018 +0.002	$^{+0.018}_{+0.002}$	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 -0.011	+0.030 +0.011	+0.030 +0.011	+0.03(+0.01)	$^{+0.030}_{+0.011}$	+0.03(+0.01)	+0.03(+0.01)	+0.030 +0.011	+0.035 +0.013	+0.035 +0.013	D-DIA	NOM TOL	
	19	24	28	28	38	42	48	55	55	60	60	65	65	75	65	80	65	80	95	95	- D	MON	
	$^{-0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{+0.0}_{-0.0}$	$^{-0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{+0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{+0.5}_{-0.5}$	$^{-0.5}_{-0.5}$	$^{+1}_{-1}$	$^{+1}_{-1}$	$^{+1}_{-1}$	$^{+1}_{-1}$	$^{+1}_{-1}$	$^{+1}_{-1}$	$^{+1}_{-1}$	$^{+1}_{-1}$	(EIGHT)	TOL	
	80	06	100	112	132	160	180	200	225	225	250	250	280	280	315	315	315	315	355	355	H(CEN I	MON	
	2-8	2-8	2-8	2-8	2-8	2-8	2-8	2-8	2	4-8	2	4-8	2	4-8	5	4-8	2	4-8	4-8	4-8	NO. OF H(CEN HEIGHT)	POLES	
	KF80	KF90L	KF100L	KF112M	KF132M	KF160L	KF180L	KF200L	KF225M	KF225M	KF250M	KF250M	KF280M	KF280M	KF315M	KF315M	KF315L	KF315L	KF355M		[1]	SIZE	
	KF	KF	KF]	KF1	KF1	KF]	KF]	KF2	KF2	KF2	KF2	KF2	KF2	KF2	KF3	KF3	KF	KF	KF3	KF			
↓↓	-	~	n	4	5	9	7	×	6	10	11	12	13	14	15	16	17	18	19	20		PART NO	
																						P	

KF80 ONLY

- **AD** -

- ro --

TERMINATION AS PER GAS GR.-I

KF80	2-8	80	-0+0 -0.5	19	+0.009 -0.004	40	21.5		$^{+0}_{-0.030}$	9				125 1	100 5	0 1	0 15	56 32	2 125	5 32	12	290	182	210	350
KF90L	2-8	90	$^{+0.5}_{-0.5}$	24	+0.009 -0.004	50	27	∞	$^{+0}_{-0.036}$	7	$^{+0}_{-0.090}$	20	$^{+0}_{-0.2}$ 1		125 5	6 1	0 17	0 40	155	5 45	15	317	200	227	360
KF100I	2-8	100	$^{-0+0}_{-0.5}$	28	+0.009 -0.004	60	31		$^{+0}_{-0.036}$	7			-		140 6	63 1	12 20	200 38	• •) 45	14	280	240	265	465
KF112M	A 2-8	112	$^{-0.5}_{-0.5}$	28	+0.009 -0.004	60	31		$^{+0}_{-0.036}$	2					40 7	0 1		230 40	180		15	315	255	330	476
KF132M	A 2-8	132	$^{-0.5}_{-0.5}$	38	$^{+0.018}_{+0.002}$	80	41		$^{+0}_{-0.036}$	8							12 28	280 58		3 50	20	350	294	350	500
KF160I	2-8	160	$^{-0.5}_{-0.5}$	42	+0.018 +0.002	110	45		$^{+0}_{-0.043}$	8							15 35	355 80						400	656
KF180I	2-8	180	$^{-0.5}_{-0.5}$	48	$^{+0.018}_{+0.002}$	110	51.5		$^{+0}_{-0.043}$	6							15 37						395	425	706
KF200I	2-8	200	$^{-0.5}_{-0.5}$	55	+0.030 +0.011	110	59		$^{+0}_{-0.043}$	10					305 1			390 90	356		25			450	774
KF225M	A 2	225	-0+0 -0.5	55	$^{+0.030}_{+0.011}$	110	59		$^{+0}_{-0.043}$								19 44	8 95						480	860
KF225M	A 4-8	225	$^{-0.5}_{-0.5}$	60	+0.030 +0.011	140	64		$^{+0}_{-0.043}$	11							19 44		368				515	480	890
KF250M	A 2	250	$^{+0}_{-0.5}$	60	+0.030 -0.011	140	64		$^{+0}_{-0.043}$								24 48					590		470	966
KF250M	A 4-8	250	$^{-0.5}_{-0.5}$	65	+0.030 +0.011	140	69		$^{+0}_{-0.043}$	11					349 1	168 2	24 48	484 121	1 420			590		470	966
KF280M	A 2	280	$^{+1}_{-1}$	65	$^{+0.030}_{+0.011}$	140	69		$^{+0}_{-0.043}$								24 54	0 142	2 500		32	660		625	1078
KF280M	A 4-8	280	$^{+1}_{-1}$	75	+0.030 +0.011	140	79.5		$^{+0}_{-0.052}$	12	-						24 54	540 142	2 500			660		625	1078
KF315M	A 2	315	$^{+1}_{-1}$	65	$^{+0.030}_{+0.011}$	140	69		$^{+0}_{-0.043}$	11							28 6(0 170			36	722		645	1173
KF315M	A 4-8	315	-+- 1	80	+0.030 +0.011	170	85		$^{+0}_{-0.052}$	14				508 4	457 2	216 2	28 600	0 170	0 540	135	36	722	612	645	1203
KF315L	~	315	$^{+1}_{-1}$	65	+0.030 +0.011	140	69		$^{+0}_{-0.043}$	11					508 2		28 60	300 170	0 591		36	722		645	1273
KF315I	. 4-8	315	$^{+1}_{-1}$	80	+0.030 +0.011	170	85		$^{+0}_{-0.052}$	14					508 2	216 2	28 6(300 170	0 591		36	722		645	1303
KF355M	A 4-8	355	$^{+1}_{-1}$	95	$^{+0.035}_{+0.013}$	170	100		$^{+0}_{-0.052}$	14			Ŭ	310 5	560 2	254 2	28 72	720 140	0 650	160	45	820	740	635	1440
KF355L		355	+ 1	95	+0.035 +0.013	170	100		$^{+0}_{-0.052}$	14			•		630 2	254 2	28 72	720 140	0 720	160	45	820	740	635	1570
FRAME		NO. OF HICEN HEIGHT	HEIGHT	_	D-DIA	E Shaft		Ŧ	5-	GL	~	ტ	Щ	FIXING	DIME	G DIMENSIONS	S								
SIZE	POLES	MON	TOL	MON	TOL NOM TOL EXTN	EXTN	GA	MON	TOL N	, MON	TOL	NOM T	TOL	A I	B	C	K AB	B AA	A BB	BA	ΗA	ЦН	AC	AD	Г

	-1-75
	CAD
	FER
۲ ۲	AJ
TATTAT	NOTION
TTED MIN	IEKIMIIN

	304	360	396	428	472	518	604	638	638	704	704	752	752	806	806	806	806	1260	1260		HD
2 2	3.5	4	4	4	5	5	5	5	5	5	5	5	5	9	9	9	9	9	9		Τ
19	12	15	15	15	19	19	19	19	19	19	19	19	19	24	24	24	24	24	24		В
006	200	250	250	300	350	350	400	450	450	550	550	550	550	660	660	660	660	800	800		Ρ
+0.014	+0.014	+0.014 -0.011	+0.014 -0.011	$^{+0.016}_{-0.013}$	+0.016 -0.013	$^{+0.016}_{-0.013}$	+0.018 -0.018	+0.018 -0.018	+0.018 -0.018	$^{+0.020}_{-0.020}$	+0.020 -0.020	+0.020 -0.020	$+0.020 \\ -0.020$	$^{+0.022}_{-0.022}$	+0.022 -0.022	$^{+0.022}_{-0.022}$	+0.022 -0.022	+0.025 -0.025	+0.025 -0.025		TOL
130		180	180	230	250	250		350		450	450	450	450	550	550	550	550	680	680	Z	NOM '
165	165	215	215	265	300	300	350	400	400	500	500	500	500	600	600	600	600	740	740		Μ
159	147	181	196	203	271	290	329	368	369	412	412	441	441	495	495	495	495	568	568		LD
130	442	495	648	675	772	792	880	870			1062	1130	1130	1171	1201	1171	1201				LC
10	10	11	11	12	13	13	15	16	16	18	18	18	18	22	22	22	22	25	25		LA
385	385	505	495	525	692	736	847	925	955	1036	1036	1120	1120	1224	1254	1325	1355	1453	1583		L
910	227	265	330	350	400	425	450	480	480	470	470	625	625	645	645	645	645	635	635		AD
155 ⁺⁰ 1899	200	240	255	294	342	395	450	515	515	515	515	600	600	612	612	612	612	740	740		AC
0+	200 +0 +0	$^{+0.4}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0}_{-0.2}$	പ	TOL
и 1 1 0 1 1 0	20	24	24	33	37	42.5	49	49	53	53	58	58	67.5	58	71	58	71	84	84	U	NOM
• 0+	060 0-	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	Q	GA NOM TOL NOM TOL NOM TOL
3	2	7	7		∞	6	10	10	11	11	11	11	12	11	14	11	14	14	14	ც	NOM
0+	-0.036 +0 -0.036	$^{+0}_{-0.036}$	$^{+0}_{-0.036}$	$^{+0}_{-0.036}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.052}$	$^{+0}_{-0.043}$	$^{+0}_{-0.052}$	$^{+0}_{-0.043}$	$^{+0}_{-0.052}$	$^{+0}_{-0.052}$	$^{+0}_{-0.052}$	Ĺц	TOL
9	000	∞	∞	10	12	14	16	16	18	18	18	18	20	18	22	18	22	25	25		NOM
215	27	31	31	41	45	51.5	59	59	64	64	69	69	79.5	69	85	69	85	100	100	r	
40	50		60		110	110					140		140	140	170		170	170	170	E Shaft	EXTN
+0.009	+0.009 $+0.009$	+0.009 -0.004	+0.009 -0.004	+0.018 +0.002	+0.018 $+0.002$	+0.018 +0.002	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 -0.011	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.035 +0.013	+0.035 +0.013	D-DIA	POLES NOM TOL
10	24	28	28	38	42	48	55	55	60	60	65	65	75	65	80	65	80	95	95		NOM
2-8	2-8	2-8	2-8		2-8	2-8		~	4-8	~	4-8		4-8		4-8		4-8		4-8	NO. OF	POLES
K F80	KF90L	KF100L	KF112M	KF132M	KF160L	KF180L	KF200L	KF225M	KF225M	KF250M	KF250M	KF280M	KF280M	KF315M	KF315M	KF315L	KF315L	KF355M	KF355L	FRAME	SIZE
	~ ~~	3	4 4		6		8		10 K	11 k	12 K	13 K	14 K	15 K	16 K		18 1	19 K	20	-	PART NO

i

T Y

× ×

Y

ģ

÷ é

Flange Mounted

FRAME SIZE KF200 & ABOVE

1 | + | + | ↓

ф

IB
∞
-IIA
GR
S
G P
AS PER GAS GRI
AS
Ζ
0
ATIO
Ż
Ţ
TER

																			0		
	304	360	396	428	472	518	604	638	638	704	704	752	752	806	806	806	806	1260	1260		HD
3.5	3.5	4	4	4	5	5	5	5	5	5	5	5	5	9	9	9	9	9	9		Τ
12	12	15	15	15	19	19	19	19	19	19	19	19	19	24	24	24	24	24	24		S
200	200	250	250		350				450	550		550	550	660	660	660	660	800	800		Ρ
+0.014 -0.011	+0.014 -0.011	+0.014 -0.011	+0.014 -0.011	+0.016 -0.013	+0.016 -0.013	+0.016 -0.013	+0.016 -0.016	+0.018 -0.018	+0.018 -0.018	+0.020 -0.020	+0.020 -0.020	+0.020 -0.020	+0.020 -0.020	+0.022 -0.022	+0.022 -0.022	$^{+0.022}_{-0.022}$	+0.022 -0.022	+0.025 -0.025	+0.025 -0.025	7	NOM TOL
130	130	180	180	230	250	250	300	350	350	450	450	450	450	550	550	550	550	680	680		NOM
185	185	215	215	265	300	300	350	400	400	500	500	500	500	600	600	600	600	740	740		Μ
152	147	181	196	203	271	290	329	368	369	412	412	441	441	495	495	495	495	568	568		LD
10	10	11	11	12	13	13	15	16	16	18	18	18	18	22	22	22	22	25	25		LA
385	385	505	495	525	692	736	847	925	955	1036	1036	1120	1120	1224	1254	1325	1355	1453	1583		Γ
210	227	265	330	350	400	425	450	480	480	470	470	625	625	645	645	645	645	635	635		AD
182	200	240	255	294	342	395	450	515	515	515	515	600	600	612	612	612	612	740	740		AC
$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	$^{+0.2}_{-0.2}$	7 5	TOL
							49											84		0	NOM
$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	$^{+0}_{-0.090}$	10 + 0.090 + 0.090	$^{+0}_{-0.090}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	$^{+0}_{-0.110}$	D	TOL NOM TOL
9	7	7	7	×	∞	6	10	10	11	11	11	11	12	11	14	11	14	14	14	9	NOM
$^{+0}_{-0.030}$	$^{+0}_{-0.036}$	$^{+0}_{-0.036}$	$^{+0}_{-0.036}$	$^{+0}_{-0.036}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.043}$	$^{+0}_{-0.052}$	$^{+0}_{-0.043}$	$^{+0}_{-0.052}$	$^{+0}_{-0.043}$	$^{+0}_{-0.052}$	$^{+0}_{-0.052}$	$^{+0}_{-0.052}$	r	TOL
9	∞	∞	∞	10	12	14	16	16	18	18	18	18	20	18	22	18	22	25	25	щ	NOM
21.5	27	31	31	41	45	51.5	59	59	64	64	69	69	79.5	69	85	69	85	100	100		GA
40	50	60	60	80	110	110	110	110	140	140	140	140	140	140	170	140	170	170	170	EUNET	EXTN
$^{+0.009}_{-0.004}$	+0.009 -0.004	+0.009 -0.004	+0.009 -0.004	$^{+0.018}_{+0.002}$	+0.018 $+0.002$	$^{+0.018}_{+0.002}$	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	+0.030 -0.011	+0.030 +0.011	+0.030 +0.011	+0.030 +0.011	$^{+0.030}_{+0.011}$	+0.030 +0.011	$^{+0.030}_{+0.011}$	+0.030 +0.011	$^{+0.035}_{+0.013}$	+0.035 +0.013		
19	24	28	28	38	42	48	55	55	09	09	65	65	75	65	80	65	80	95	95	D-DIA	NOM
2-8	2-8	2-8	2-8	2-8	2-8	2-8	2-8	8	4-8	8	4-8	2	4-8	8	4-8	2	4-8	4-8	4-8	NO. OF	POLES NOM TOL
KF80	KF90L	KF100L	KF112M	KF132M	KF160L	KF180L	KF200L	KF225M	KF225M	KF250M	KF250M	KF280M	KF280M	KF315M	KF315M	KF315L	KF315L	KF355M	KF355L	FRAME N	SIZE
KI	KF	KF.	KF1	KF1	KF.	KF.	KF:	KF2	KF2	KF2	KF2	KF2	KF2	KF3	KF3	KF	KF	KF3	KF	FR/	
-	2	3	4	5	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20		PART NO

Э¥

Y HTH

×

×

N

Y

Flange Mounted

FRAME SIZE KF200 & ABOVE

4 ++ ++ +

血

NOTES

Paharpur Works 58, Taratala Road Kolkata - 700024 Ph: 91 33 4403 0400 Fax: 91 33 2469 5369/8530 Fax: 91 33 2469 6988

AEI Works 1, Taratala Road Kolkata - 700024 Ph: 91 33 4403 0500

www.marathonelectric.com

A Regal Brand

www.regalbeloit.com