FORWARD, ALWAYS PROGRESSING 进取·永不止步

INOVANCE 汇川技术

MD520 系列通用变频器 调试手册

前言

资料简介

MD520系列变频器是一款通用高性能电流矢量变频器,主要用于控制和调节三相交流异步 电机的速度和转矩,可用于纺织、造纸、拉丝、机床、包装、食品、 风机、水泵及各种自 动化生产设备的驱动。

本手册介绍产品的调试与试运行操作,包括调试工具、调试流程、调试具体操作和故障处 理等内容。功能码、故障码的完整信息,请参见19012396《MD520系列通用变频器参数手 册》

更多资料

资料名称	资料编码	内容简介
MD520系列通用变频器手 册包	PS00012134	介绍产品的选型、机械设计、电气设计、安装、通信、调试、功能应用、故障处理、以及 产品符合认证 及标准等内容。
MD520系列通用变频器参 数手册	19012396	介绍产品的功能码、故障码信息。
MD520系列通用变频器快 速安装与调试手册	19011568	介绍产品的安装、接线、调试、故障处理等内 容。
MD520系列通用变频器硬 件手册	19011569	介绍产品的系统构成、技术规格、部件、尺 寸、选配件(安装附件、线缆、外围电气元件)、扩展卡等,以及产品相关的日常保养与维 护指导、符合认证及标准等详细内容。
MD520系列通用变频器安 装指导	19011570	介绍产品的安装尺寸、空间设计、详细安装步 骤、接线要求、布线要求、选配件安装要求, 以及常见的EMC问题解决建议。
MD520系列通用变频器调 试手册 (本手册)	19011571	介绍产品的调试工具、调试流程、详细调试步 骤、故障处理等内容。
MD520系列通用变频器通 信手册	19011641	介绍产品的通信方式、通信组网、通信配置等 内容。
MD520系列通用变频器功 能手册	19011572	介绍产品的功能应用、故障处理等内容。
MD520系列通用变频器安 全功能手册	19011794	介绍了产品安全信息、机械与电气安装说明、 调试及维护指导、安全参数等内容。

版本变更记录

修订日期	资料版本	对应软件版本	资料变更内容
2024-02	B01	版本号: A12 版本标签: F7-10= U60.07/F7-11= U61.10/F7-15= 000.00/F7-16=000.00	 删除内容: •删除"3.2故障码一览表"、"3.3故障属性 一览表",新增第77页"3.2故障和报警码 列表",故障码内容引用参数手册 •删除"4参数一览表" 功能码、故障码的完整信息,请参 见19012396《MD520系列通用变频器参数手 册》
2023-11	B00	版本号:A10 版本标签:F7-10= U60.07/F7-11= U61.08/F7-15= 000.00/F7-16=000.00	 修改内容: 更新第11页 "1.1 LED操作面板说明" 更新第25页 "1.8 操作面板驱动电机演示" 更新第76页 "3.2 故障码一览表" 更新第86页 "3.3 故障属性一览表" 更新第92页 "参数一览表" 全文细小勘误
2022-01	A00	-	手册第一次发布

关于手册获取

本手册不随产品发货,如需获取电子版PDF文件,可以通过以下方式获取:

- 登录汇川技术官方网站(<u>www.inovance.com</u>), "服务与支持-资料下载", 搜索关 键字并下载。
- 使用手机扫描产品机身二维码,获取产品配套手册。
- 扫描下方二维码,安装掌上汇川App,在App内搜索获取手册。

保修声明

正常使用情况下,产品发生故障或损坏,汇川技术提供保修期内的保修服务(产品保修期 请详见订货单)。超过保修期,将收取维修费用。

保修期内,以下情况造成的产品损坏,将收取维修费用。

- 不按手册中的规定操作本产品,造成的产品损坏。
- 火灾、水灾、电压异常,造成的产品损坏。
- 将本产品用于非正常功能,造成的产品损坏。
- 超出产品规定的使用范围,造成的产品损坏。
- 不可抗力(自然灾害、地震、雷击)因素引起的产品二次损坏。

有关服务费用按照厂家统一标准计算,如有契约,以契约优先的原则处理。

详细保修说明请参见《产品保修卡》。

目录

前言	1
安全注意事项	6
1 调试工具	11
1.1 LED操作面板说明	11
1.2 相关参数	17
13	20
1.1 分为改良	-0 71
	1
1.5 状态参数显示	21
1.6 故障和报警显示	23
1.7 MFK多功能键操作	<u>2</u> 4
1.8 操作面板驱动电机演示	25
2 调试与试运行	30
2.1 调试流程	30
2.1.1 基本调试流程	30
2.1.2 Vf控制模式调试流程	32
2.1.3 SVC&FVC控制模式调试流程	33
2.1.4 PMVVC控制模式调试流程	34
2.2 调试步骤	35
2.2.1 上电前检查	35
2.2.2 上电	35
2.2.3 参数初始化	36
2.2.4 查看软件版本	37
2.2.5 电机参数设置	37
2.2.6 电机参数目子习	39
2.2.1 以且叩文///	39 41
2.2.0 0 呈频中称	42
2.2.10 设置以参数(可选)	42
2.2.11 设置SVC参数(可选)	43
2.2.12 设置FVC参数(可选)....................................	43
2.2.13 设置PMVVC参数(可选)	45
2.2.14 设定加减速时间	46
2.2.15 设置启动方式(可选)	46
2.2.16 设定启动频率(可选)	47
2.2.17 设定S曲线(可选)	47
2.2.18 设定停机参数	47
2.2.19 AI设置(可选)	47
2.2.20 AO设置(可选)	53
2.2.21 以復 (可选)	24 со
2.2.22 UU设直(ባ远)	зU

2.2.23 设置多段速指令(可选) 2.2.24 设置继电器输出(可选)	64 65
2.3 功能调试 2.3.1 PMVVC功能调试(仅适应于同步机)	69 69
3 故障处理	71
 3.1 常用故障及诊断 3.1.1 报警与故障显示 3.1.2 故障发生后再启动 3.1.3 常见故障处理 3.1.4 不同控制模式下试运行处理对策 	71 71 71 74 75
3.2 故障和报警码列表	77

安全注意事项

安全声明

- 本章对正确使用本产品所需关注的安全注意事项进行说明。在使用本产品之前,请先阅 读产品手册并正确理解安全注意事项的相关信息。如果不遵守安全注意事项中约定的事 项,可能导致人员死亡、重伤,或设备损坏。
- 手册中的"危险"、"警告"和"注意"事项,并不代表所应遵守的所有安全事项,只 作为所有安全注意事项的补充。
- 本产品应在符合设计规格要求的环境下使用,否则可能造成故障,因未遵守相关规定引 发的功能异常或部件损坏等不在产品质量保证范围之内。
- 因未遵守本手册的内容、违规操作产品引发的人身安全事故、财产损失等,汇川技术将 不承担任何法律责任。

安全等级定义

危险	 表示如果不按规定操作,	则导致死亡或严重身体伤害。
警告	 表示如果不按规定操作,	则可能导致死亡或严重身体伤害。
注意		则可能导致轻微身体伤害或设备损坏

安全注意事项

- 本手册中产品的图解,有时为了展示产品细节部分,产品为卸下外罩或安全遮盖物的状态。使用本产品时,请务必按规定装好外罩或遮盖物,并按手册的规定操作。
- 本手册中的产品图示仅为示例,可能与您订购的产品略有差异,请以实际订购产品为准。
- 作业人员必须采取机械防护措施保护人身安全,请穿着和佩戴必要的防护设备,如穿防
 砸鞋、穿安全服、戴安全镜、戴防护手套和袖套等。

安全标识

为了保障安全作业,请务必遵守粘贴在设备上的安全标识,请勿损坏、剥下安全标识。安 全标识说明如下:

安全标识				
T12及以下机 型	T13机型	内容说明		
▲ □ ▲ ②10min	<u>企</u> <u>企</u> 15min	 使用产品之前请仔细阅读安全相关手册和使用说明,否则会有人员伤亡或产品损坏的危险! 在通电状态下和电源切断后10分钟内(T12及以下机型)/15分钟内(T13机型),请勿触摸端子部分或拆下盖板,否则会有电击危险! 		

1 调试工具

1.1 LED操作面板说明

尺寸

LED操作面板的外形及安装尺寸如下图所示。

图1-1 LED操作面板外形尺寸T1~T4(单位: mm)

图1-2 LED操作面板外形尺寸T5~T12(单位: mm)

部件说明

LED操作面板可以显示运行状态、故障信息,进行参数设置等。操作面板如下图所示。

图1-3 部件示意图

表1-1 操作面板构成说明

序号	部件名称	说明
1	状态指示灯	-
2	辅显示区	显示以下信息: •键盘测试、调谐等提示信息显示 •当前故障及系统整体监视 •站号、电动、STO状态
3	主显示区	显示功能码等
4	单位指示灯	-
5	辅显示区操作光标	-
6	主显示区操作光标	-
7	菜单指示灯	用于指示当前菜单,通过菜单键进行切换。 同一时间只能有一个指示灯亮。
8	菜单标识	菜单标识从左到右分别为:基本菜单、用户 自定义参数、设定值有更改的参数(非默认 值)、故障列表
9	编程/返回键	-
10	左移位键	-

序号	部件名称	说明
1)	确认键	-
12	运行键	-
13	多功能选择键	-
14)	递增键	-
15	菜单键	-
16	右移位键	-
10	递减键	-
18	停机键	-

按键信息

表1-2 按键说明

按键	名称	功能			
	菜单键	长按此键,可切换主显示区和辅显示区 在主显示区,点按此键,可切换不同菜单(基本菜单、 用户自定义参数、设定值有更改的参数(非默认值)、 故障列表)			
ß	编程/返回键	返回上一画面 进入一级菜单			
	确认键	进入设置/确认设置			
	导航键	在辅显示区,按左右键切换显示状态 在主显示区: •基本菜单、用户菜单及校对菜单:监控页面,下键用作 键盘电位计,左右键用来切换监控变量;参数页面, 上下键用来调节设定值,左右键用来选择设定位,OK 键用来确认设定值 •故障列表:左右键用来循环切换故障历史记录			
MF. K	多功能选择键	可由用户设置不同功能:如命令源切换、正反转切换和 点动等			
B	运行键	在操作面板启停控制方式下,用于运行操作			
Ø	停止键/故障复位	运行状态时,用于停止运行操作 故障报警状态时,用于复位操作			

状态指示灯

表1-3 状态指示灯

状态指示灯		状态说明	
	正转指示灯常亮	正转/设定方向为正	
FWD	反转指示灯常亮	反转/设定方向为反	
	正反转指示灯功闪烁	正反转切换	
REV			
	本地/远程指示灯常灭	本地控制	
	本地/远程指示灯常亮	端子控制	
	本地/远程指示灯慢闪	通讯控制	
	本地/远程指示灯快闪	自定义控制	
T	转矩控制指示灯常亮	转矩控制	
S	速度控制指示灯常亮	速度控制	
^	故障指示灯常亮	存在故障	
	故障指示灯常灭	无故障	
	运行指示灯常亮	运行	
	停机指示灯常亮	停机	
	站号指示灯常亮	辅显示区域显示站号值	
DRIVE	站号指示灯常灭	辅显示区域显示的非站号值	
	轴号指示灯常亮	辅显示区域显示轴号值	
axis /	轴号指示灯常灭	辅显示区域显示的非轴号值	

状态打	旨示灯	状态说明		
	连接器指示灯常亮	主显示区域显示的量为连接器 变量		
Ð	连接器指示灯常灭	主显示区域显示的量为非连接 器变量		
	负数负号指示灯常亮	主显示区域显示的值为负数		
	负数负号指示灯常灭	主显示区域显示的值为正数		
	主显示区操作光标常亮	操作区域为主显示区域		
4	辅显示区操作光标常亮	操作区域为辅显示区域		
kwhs r/min Hz A V °C %	某一单位灯常亮	主显示区域值单位为常亮灯对 应单位		
		主显示区域为基本菜单		
	□ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			
		主显示区域为用户自定义参数		
	2 指示灯常亮			
		主显示区域为设定值有更改的 参数(非默认值)		
		主显示区域为故障列表		
	指示灯常亮			

数据显示

操作面板上共有两个数据显示区:6位LED辅显示区域,5位LED主显示区域。 辅显示区域可以显示站号、轴号、当前状态、故障/警告等相关信息。 主显示区域可以显示显示设定频率、输出频率、各种监视数据等相关信息。

表1-4 LED数据显示与实际数据对应表

LED显示	实际对应	LED显示	实际对应	LED显示	实际对应	LED显示	实际对应
0	0	9	9	Ⴙ	h	Г	r
ł	1	8	A	С	С	٤	t
2	2	Ь	В	٦	J	U	U

LED显示	实际对应	LED显示	实际对应	LED显示	实际对应	LED显示	实际对应
3	3	C	С	L	L	У	у
Ч	4	Ь	D	П	n	ſ	Т
S	5	Ε	E		N	U	u
6	6	F	F	Ο	0	1	-
7	7	Н	Н	ρ	Р	-	-
8	8	ն	G	٩	q	-	-

1.2 相关参数

参数	参数名称	默认值	设定范围	参数说明
参数 F7-01	参数名称 MF.K 键功能选择	<u>默认值</u> 0	 设定范围 0: MF.K键无效 1: 强制面板控制 2: 正反转切换 3: 正转点动 4: 反转点动 	参数说明 操作面板上的MF.K 键为多功能键,通过该参数设置 MF.K 键的功能。 0:MF.K 无效 此键无功能。 1:强制面板控制 F0-02设置为0(操作面板),按下MF.K 键后无效果 ;F0-02设置为1(端子)、2(通信)、3(自定义控 制),通过MF.K 键可实现强制使用本地面板控制。 2:正反转切换 通过MF.K 键切换频率指令的方向。该功能只在命令源 运行指令为操作面板时有效。 3:正转点动 通过MF.K 键实现正转点动(FJOG)。该功能只在命 令源运行指令为操作面板时有效。 4:反转点动 通过MF.K 键实现反转点动(RJOG)该功能只在命令
F7-02	STOP/RESET 键功 能	0	0: 只键盘方式S/R才有效 1: OFF1命令5/R有效 2: OFF2命令5/R有效 3: OFF3命令S/R有效	源运行指令为操作面板时有效。 操作面板上的STOP/RESET键为停机复位键,通过该参 数设置STOP/RESET键的功能。 0:只在键盘操作方式下,STOP/RESET键停机功能有 效 1:在任何操作方式下,STOP/RESET键停机功能有效 ,并以OFF1停机方式停机 2:在任何操作方式下,STOP/RESET键停机功能有效 ,并以OFF2停机方式停机 3:在任何操作方式下,STOP/RESET键停机功能有效 ,并以OFF3停机方式停机
F7-03	LED运行显示参数1	0x1F	BIT00: 运行频率(Hz) BIT01: 设定频率(Hz) BIT02: 母线电压(V) BIT03: 输出电压(V) BIT04: 输出电流(A) BIT05: 输出功率(kW) BIT06: 输出转矩(%) BIT07: DI输入状态 BIT08: DO输出状态 BIT09: AI1电压(V) BIT10: AI2电压(V) BIT11: AI3电压(V) BIT12: 计数值 BIT13: 长度值 BIT14: 负载速度显示 BIT15: PID设定	运行状态下,按下LED操作面板上左移位键、右移位键 可以实时查看变频器的16个状态值。BIT位的值为1, 表示显示;BIT位的值为0,表示不显示。 二进制转为十六进制后的数值作为F7-03的值。

表1–5 操作面板参数说明

参数	参数名称	默认值	设定范围	参数说明
F7-04	LED运行显示参数2	0x0000	BIT00: PID反馈	在运行状态下,按下LED操作面板上左移位键、右移位
			BIT01: PLC阶段	键可以实时查看变频器的16个状态值。BIT位的值为
			BIT02: PULSE输入脉冲频率	1,表示显示;BIT位的值为0,表示不显示。
			(kHz)	二进制转为十六进制后的数值作为F7-04的值。
			BIT03:运行频率2(Hz)	
			BIT04: 剩余运行时间	
			BIT05: Al1校正前电压(V)	
			BIT06: 自由映射0	
			BIT07: 自由映射1	
			BIT08: 电机转速	
			BIT09:当前上电时间(Hour)	
			BIT10:当前运行时间(Min)	
			BIT11: PULSE输入脉冲频率	
			(Hz)	
			BIT12: 通讯设定值	
			BIT13: 编码器反馈速度	
			BIT14: 主频率X显示	
			BIT15: 辅频率Y显示	
F7-05	停机显示参数	0x0033	BIT00:设定频率(Hz)	在停机时若需要显示以下各参数,将其相对应的位置
			BIT01: 母线电压(V)	设为1, 将此二进制数转为十六进制后设于F7-05。
			BIT02: DI输入状态	停机状态下,按下LED操作面板上左移位键、右移位键
			BIT03: DO输出状态	可以实时查看变频器的13个状态值。BIT位的值为1,
			BIT04: AI1电压(V)	表示显示;BIT位的值为0,表示不显示。
			BIT05: AI2电压(V)	二进制转换为十六进制后的数值作为F7-05的值。
			BIT06: AI3电压(V)	
			BIT07: 计数值	
			BIT08: 长度值	
			BIT09: PLC阶段	
			BIT10: 负载速度	
			BIT11: PID设定	
			BIT12: PULSE输入脉冲频率	
			(KHZ)	
			BII13: 预留	
			BII14: 目由映射0	
		1	BIT15: 自由映射1	

参数	参数名称	默认值	设定范围	参数说明
FP-01	参数初始化	1	0: 无操作 1: 恢复出厂参数,不包括电机 参数 2: 清除记录信息 4: 备份用户当前参数 501: 恢复用户备份参数 503: 恢复出厂参数,包括电机 参数	设置变频器进行参数初始化时的对应动作。 0:无操作 变频器不进行任何操作。 1:恢复出厂参数模式,不包括电机参数 变频器功能参数大部分恢复为厂家出厂参数,但是电 机参数、频率指令小数点(F0-22)、故障记录信息、 累计运行时间(F7-09)、累计上电时间(F7-13)、 累计耗电量(F7-14)、逆变器模块散热器温度(F7- 07)不恢复。 2:清除记录信息 清除变频器故障记录信息、累计运行时间(F7-09)、 累计上电时间(F7-13)、累计耗电量(F7-14)。 4:备份用户当前参数 备份当前用户所设置的参数设定值。 501:恢复用户备份参数 恢复通过设置FP-01为4时所备份的参数设定值。 503:恢复出厂参数,包括电机参数 除了厂家参数FF组、FP-00、FP-01不恢复,其他变频 器功能参数都恢复为厂家出厂参数。
FP-02	功能参数组显示选 择	63	BIT00: U组 0: 隐藏 1: 显示 BIT01: A组 0: 隐藏 1: 显示 BIT02: B组 0: 隐藏 1: 显示 BIT03: C组 0: 隐藏 1: 显示 BIT04: H组 0: 隐藏 1: 显示 BIT05: L组 0: 隐藏 1: 显示	设置U组、A组、B组、C组、H组、L组参数是否在操作 面板上显示。 BIT位的值为1,表示显示。 BIT位的值为0,表示不显示。
FP-03	用户参数组显示选择	111	 个位: 个位: 0:用户模式隐藏 1:用户模式显示 +位: 0:校对模式隐藏 1:校对模式显示 百位: 0:错误菜单隐藏 1:错误菜单隐藏 1:错误菜单显示 	设置用户定制参数组、用户变更参数组和错误菜单是 否在操作面板上显示。

1.3 参数设置

操作面板采用3级菜单结构进行参数设置等操作。进入每一级菜单之后,当显示位闪烁时, 可以按 译 键、 课 课 键 键 键进行设置。三级菜单如下:

- 一级菜单:参数组
- 二级菜单:参数
- 三级菜单:参数设定值

举例:将参数F3-02从10.00Hz更改设定为15.00Hz。

图1-4 参数修改操作示意图

在三级菜单操作时,可按 键返回二级菜单。两者的区别是: • 按 键将设定参数保存后返回二级菜单,并自动转移到下一个参数。

在第三级菜单状态下,若参数设定值没有闪烁位,表示该参数值不能设置,可能原因有:

- 该参数为不可更改参数,如产品类型、实际检测参数、运行记录参数等。
- 该参数在运行状态下不可更改,需停机后才能进行更改。

1.4 参数查看

设置FP-02=11, FP-03=11, 即可通过键盘查看全部参数, 操作流程如下图所示。

图1-5参数查看操作示意图

1.5 状态参数显示

主显示区和辅显示区的显示的内容独立,互不影响。二者有自己独立的菜单,默认情况下 是操作主显示区。

长按菜单键_____,可以切换操作区域为主显示区域或辅显示区域。当前操作区域可以查看显 示区域对应的操作光标。

1. 辅显示区域参数显示

• 站号显示页(默认界面),显示当前设备站号为001。

状态显示页:按上述操作,继续按左右按键后,如下所示可以显示当前设备状态,此时DRIVE和AXIS都不亮。

目前可以显示的状态有:

- reset初始化:上电后正在初始化
- nr未准备好:未上主回路电
- ry准备好:等待运行命令
- rn正运行:运行中

以下状态出现时,跳出显示,状态结束后,显示也结束。

- STO: STO激活时显示
- -JOG: 点动时显示
- HErE: Here命令时显示
- CALL: 远程呼叫
- busy:参数下载或恢复出厂时显示
- TUNE: 调谐命令时显示
- 故障码显示页。E对应故障,L对应轻故障,A对应警告,如果出现故障警告时,辅显 示区默认显示为故障码页,上下切换可以查看不同故障,左右切换仍可以翻页显示不 同菜单。

2. 主显示区域参数显示

在运行状态下,按下左移位键、、右移位键、,可以查看状态参数。默认显示状态参数有:运行频率、设定频率、母线电压、输出电压、输出电流。如果想查看更多状态参数,请参考"相关参数"中F7-03、F7-04相关说明。

在停机状态下,按下左移位键, 右移位键, 可以查看状态参数。默认显示状态参数有: 设频率、母线电压、Al1电压、Al2电压。如果想查看更多状态参数请参考第17页 "1.2 相关参数"中F7-05相关说明。

1.6 故障和报警显示

产品出现故障时,故障指示灯亮起,辅显示区域显示故障代码如下图所示。

图1-6 故障代码显示

当故障指示灯闪烁时,设备会立即停止输出,故障继电器接点闭合。请参考本产品参数手 册的常见解决方法排除故障或寻求技术支持。根据操作面板显示的故障类型上查找故障原 因并解除故障,解除故障后再复位。

图1-7多个故障的查看和复位

1.7 MF_.K多功能键操作

操作面板上面的 键为多功能键,可以通过参数F7-01设置多功能键的功能。在停机或运行状态下,按下此键,进行命令通道的切换、正反转和点动。

参数	参数名称	默认值	设定范围	参数说明
F7-01	MF.K键功 能选择	0	0: MF.K键无效 1: 强制面板控 制 2: 正反转切换 3: 正转点动 4: 反转点动	操作面板上的MF.K 键为多功能键,通过该参数设置MF.K 键的功能。 0:MF.K 无效 此键无功能。 1:强制面板控制 F0-02设置为0(操作面板),按下MF.K 键后 无效果;F0-02设置为1(端子),通过MF.K 键可实现端子与操作面板之间的切换;F0-02 设置为2(通信),通过MF.K 键可实现通信与 操作面板之间的切换。 2:正反转切换 通过MF.K 键切换频率指令的方向。该功能只 在命令源运行指令为操作面板时有效。 3:正转点动 通过MF.K 键实现正转点动(FJOG)。该功能 只在命令源运行指令为操作面板时有效。 4:反转点动 通过MF.K 键实现反转点动(RJOG)该功能只 在命令源运行指令为操作面板时有效。

表1-6多功能键参数说明

1.8 操作面板驱动电机演示

按操作面板上^(MF.K)键,对电机进行正转点动、反转点动的运行控制,按 键对电机进行启动、停止的运行控制。

操作步骤

1. 上电前检查。

按照安装手册进行安装和接线检查。详细检查请参考《*MD520系列通用变频器安装指*导》的上电前检查介绍。

2. 按下电源开关,接通变频器电源。

3. 辅显示区域显示ry,查看操作面板显示50.00,表示上电成功。

4. 设置FP-01=001,恢复所有参数为出厂默认值,操作示例如下图所示。

5. 查看 F7-10的数值,数值显示代表软件版本号。

6. 根据电机铭牌数据,设置F1组电机参数。

	表1-7	电机参数说	明
--	------	-------	---

参数	参数名称	默认值	设定范围	参数说明	设定值
F1-00	电机类型 选择	0	0: 普通异步电 机 1: 变频异步电 机 2: 永磁同步电 机 3: 无助磁磁阻 电机 4: 电磁线圈	变频电机的特点是根据负荷调整频 率,改变转速。电压低的地方,变 频电机可以降低频率,可靠启动; 负荷轻的地方,可以用变频电机降 低频率,减少转速和电流,节约电 能。 普通异步电动机适用于电压正常但 经常满负荷的场所。由于是按恒频 恒压设计,不可能完全适应变频调 速的要求。 无助磁磁阻电机是一种不含永磁体 的同步电机,它的出力完全由交直 轴电感差异带来的磁阻转矩提供。	0
F1-01	电机额定 功率	机型确 定	0.1kW ~ 1000.0kW	电机额定功率是指电机工作在额定 工况时的轴端输出功率。选择电机 功率时,应在电机能够满足机械负 载要求的前提下,经济合理的选择 电机功率。要考虑电机的发热、允 许过载能力和起动能力等因素。	3.7
F1-02	电机额定 电压	机型确 定	1V ~ 2000V	电机额定电压是指电机正常工作时 的电压,一般指线电压。	0380
F1-03	电机额定 电流	机型确 定	0.01A~655.35 A(产品功 率≤55kW) 0.1A~6553.5 A(产品功率> 55kW)	电机额定电流是指电机正常工作时 的电流,一般指线电流。	9.0
F1-04	电机额定 频率	机型确 定	0.01Hz ~ 600.00Hz	电机额定频率指的是电动机在额定 运行状态下,定子绕组所接电源的 频率。	50.00
F1-05	电机额定 转速	机型确 定	1rpm ~ 65535rpm	电机额定转速指的是电动机在额定 运行状态下,转子的转速,单位为 "转/分钟" (rpm)。	1460

7. 设置F1-37为相应的调谐模式,按ENTER键确认,键盘辅助显示区显示
 按操作面板上运行命令,开始进行电机调谐。此过程中,运行指示灯长亮,辅助显示区显示TUNE,变频器使电机通电。经过一段时间后,辅助显示区显示ry,主显示区显示显示50.00,表示调谐完成。

-28-

50.00 5.10 ··· 9.60 50.00

加速过程中,运行频率动态显示递增

11. 按⁻ -按钮,电机减速停机。

2 调试与试运行

2.1 调试流程

2.1.1 基本调试流程

序号	步骤	相关参数
1	上电前检查	无
2	上电	无
3	参数初始化	FP-01
4	查看软件版本	F7-10, F7-11, F7-15, F7-16
5	设置电机参数	F1-00~F1-05。 注意设置相应的电机类型
6	设置编码器参数	F1-27, F1-28, F1-34
7	设置控制模式	F0-01
8	电机参数自学习	F1-37
10	设置命令源	F0-02
11	选择频率源	F0-03
12	(可选)设定V/f参数	F3组
13	(可选)设定SVC参数	F2-00~F2-06
14	(可选)设定FVC参数	F2-00~F2-07, F1-28
15	(可选)设置PMVVC参数	F0-01, F1-00, F1-24, F3-50~F3-55
16	设定加减速时间	F0-17, F0-18
17	(可选)设定启动方式	F6-00
18	(可选)设定启动频率	F6-03, F6-04
19	(可选)设定S曲线	F6-07, F6-08, F6-09
20	设定停机参数	F6-10~F6-14
21	(可选)AI设置	F4-13, F4-14, F4-15, F4-16
22	(可选)AO设置	F5-07, F5-08
23	(可选)DI设置	F4-00~F4-09
24	(可选)DO设置	F5-04
25	(可选)设置多段速指令	FC-00~FC-15
26	(可选)设置继电器输出	F5-00, F5-01, F5-02
27	启动	无
28	停机	无

表2-1 基本调试流程表

2.1.2 Vf控制模式调试流程

2.1.3 SVC&FVC控制模式调试流程

图2-3 SVC&FVC控制模式调试流程图

2.1.4 PMVVC控制模式调试流程

图2-4 PMVVC控制模式调试流程图

2.2 调试步骤

2.2.1 上电前检查

请务必确认以下项目后,再接通电源。

项目	内容
主回路连接确认	确认电源电压正确(380V AC~480V AC 50/60Hz)。
	确认电源输入端与变频器输入端子(R/S/T)可靠接线。
	确认电机接入端与变频器输出端子(U/V/W)可靠接线。
	确认变频器和电机正确接地。
	确认主回路的线缆线径符合要求。
	确认对主回路线耳铜管与线缆芯线部分加套管热缩,且套管完全 包覆线缆导体部。
	确认电机输出线,如超过50米,需要降低载频(F0-15)。
控制回路连接确认	确认控制回路端子和其他控制装置的连接牢靠。
	确认控制回路信号线已选用屏蔽双绞线。
	确认选配卡的接线正确。
	确认控制回路线缆与主回路动力线缆分开走线。
	确认变频器控制回路端子都处于OFF状态(变频器不运行状态) 。
负载确认	确认电机为空载状态,未与机械系统连接。
制动电阻确认	使用制动电阻和制动单元时,确认接线正确且电阻值合适。

表2-2 接通电源前确认事项

2.2.2 上电

闭合电源开关,查看变频器面板显示。变频器面板显示50.00,表示上电成功。

图2-5 操作面板上电显示

2.2.3 参数初始化

参数	参数名	默认值	设定范围	参数说明
FP-01	参数初始化	0	0: 无操作 1: 恢复出厂参数,不包括电机参数 2: 清除记录信息 4: 备份用户当前参数 501: 恢复用户备份参数 503: 恢复出厂参数,包括电机参数	设置变频器进行参数初始化时的对应动作。 0: 无操作 变频器不进行任何操作。 1: 恢复出厂参数模式,不包括电机参数 变频器功能参数大部分恢复为厂家出厂参数,但是电机参 数、频率指令小数点(F0-22)、故障记录信息、累计运行时 间(F7-09)、累计上电时间(F7-13)、累计耗电量(F7- 14)、逆变器模块散热器温度(F7-07)不恢复。 2: 清除记录信息 清除变频器故障记录信息、累计运行时间(F7-09)、累计上 电时间(F7-13)、累计耗电量(F7-14)。 4: 备份用户当前参数 备份当前用户所设置的参数设定值。 501: 恢复用户备份参数 恢复通过设置FP-01为4时所备份的参数设定值。 503: 恢复出厂参数,包括电机参数 除了厂家参数FF组、FP-00、FP-01不恢复,其他变频器功能 参数都恢复为厂家出厂参数。

2.2.4 查看软件版本

参数	参数名称	设定范围	参数说明
F7-10	性能软件版本号	0.00~655.35	变频器的性能版本号。
F7-11	功能软件版本号	0.00~655.35	变频器的功能版本号。
F7-15	性能临时版本号	0.00~655.35	性能临时软件版本号。
F7-16	功能临时版本号	0.00~655.35	功能临时软件版本号。

2.2.5 电机参数设置

参数	参数名称	设定范围	参数说明
F1-00	电机类型选择	0: 普通异步电机 1: 变频异步电机 2: 永磁同步电机 3: 无助磁磁阻电机 4: 电磁线圈	变频电机的特点是根据负荷调整频率,改变转速。电压低的地方,变频电机可 以降低频率,可靠启动;负荷轻的地方,可以用变频电机降低频率,减少转速 和电流,节约电能。 普通异步电动机适用于电压正常但经常满负荷的场所。由于是按恒频恒压设计 ,不可能完全适应变频调速的要求。 无助磁磁阻电机是一种不含永磁体的同步电机,它的出力完全由交直轴电感差 异带来的磁阻转矩提供。 电磁线圈,主要用于电磁搅拌设备,无转子,只由电机产生旋转磁场。
F1-01	电机额定功率	0.1kW~1000.0kW	电机额定功率是指电机工作在额定工况时的轴端输出功率。选择电机功率时, 应在电机能够满足机械负载要求的前提下,经济合理的选择电机功率。要考虑 电机的发热、允许过载能力和起动能力等因素。
F1-02	电机额定电压	1V~2000V	电机额定电压是指电机正常工作时的电压,一般指线电压。
F1-03	电机额定电流	0.01A~655.35A(产 品功率≼55kW) 0.1A~6553.5A(产品 功率>55kW)	电机额定电流是指电机正常工作时的电流,一般指线电流。
F1-04	电机额定频率	0.01Hz~F0-10	电机额定频率指的是电动机在额定运行状态下,定子绕组所接电源的频率。
F1-05	电机额定转速	1rpm~65535rpm	电机额定转速指的是电动机在额定运行状态下,转子的转速,单位为"转/分钟"(r/min)。
F1-06	异步电机定子 电阻	0.001Ω~65.535Ω(功 率≤55kW) 0.0001Ω~6.5535Ω(功率>55kW)	电机定子电阻是指电机定子绕组的直流电阻,该参数可通过电机调谐获得。
F1-07	异步电机转子 电阻	0.001Ω~65.535Ω(功 率≤55kW) 0.0001Ω~6.5535Ω(功率>55kW)	异步电机转子电阻是指异步电机转子绕组的直流电阻,该参数可通过电机静止 调谐或动态调谐获得。
F1-08	异步电机漏感 抗	0.01mH~655.35m H(功率≼55kW) 0.001mH~65.535m H(功率>55kW)	异步电机漏感抗是电机绕组漏磁通引起的。在电机的绕组中,通入电流,将产 生磁通,根据磁通的路径,可以分为:主磁通和漏磁通两部分。描述漏磁通可 以用一个感抗表示,就是漏感抗。该参数可通过电机静止调谐或动态调谐获 得。

参数	参数名称	设定范围	参数说明
F1-09	异步电机互感 抗	0.1mH~6553.5mH(功率≼55kW) 0.01mH~655.35m H(功率55kW)	当电机的一线圈中的电流发生变化时,在临近的另一线圈中产生感应电动势, 这个互感电动势可以通过互感抗参数来表示。 电机的互感抗可以大致分为两种,一种是定子或者转子的相间感抗,即定子的 某一相和另一相之间的电抗,还有另一种是定子和转子之间的感抗。第一种的 感抗是不随转子旋转变化的,而第二种会随着转子的转动,感抗也发生相应的 变化。 这两种都是电机的互感抗,该参数可通过电机动态调谐获得。
F1-10	异步电机空载 电流	0.1A~F1-03	异步电机空载电流是指电机空载运行时定子三相绕组中通过的电流,该参数可 通过电机动态调谐获得。
F1-17	同步电机D轴 电感	0.01mH~655.35m H(功率≤55kW) 0.001mH~65.535m H(功率>55kW)	同步电机D轴电感是指同步电机主磁极轴(纵轴)的电感值。
F1-18	同步电机Q轴 电感	0.01mH~655.35m H(功率≤55kW) 0.001mH~65.535m H(功率>55kW)	同步电机Q轴电感是指同步电机转子相临磁极轴线间的中心线(交轴)的电感 值。
F1-20	同步电机反电 动势	0V~6553.5V	为对应的F1-04设定额定频率下的电机反电动势线有效值。
F1-23	摩擦力矩百分 比	0.00%~100.00%	-
F1-26	调谐运行方向(惯量辨识和同 步机)	0~1	-
F1-27	编码器线数	1~20000	编码器线数是指编码器码盘每转一圈发出的脉冲数。在有速度传感器矢量控制 模式下(FVC),必须正确设置编码器脉冲数,否则电机运行异常。
F1-28	编码器类型	0: ABZ增量编码器 1: 23位编码器 2: 旋转变压器	 编码器分为增量式和绝对式两类。 增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
F1-29	PG信号滤波	0: 非自适应滤波 1: 自适应滤波 2: 固定互锁 3: 自动互锁	-
F1-30	编码器接线标 志	个位-:AB信号的方 向或旋转方向 十位-:保留	-
F1-31	编码器零点位 置角	0.0°~359.9°	-
F1-32	电机齿轮比分 子	1~65535	-
F1-33	电机齿轮比分 母	1~65535	-

2.2.6 电机参数自学习

准确输入电机的铭牌参数(F1-00~F1-05),参数F1-37 设置为1(异步机静止调谐),按 ENTER 键确认,键盘显示TUNE,按下RUN键,电机调谐开始,当面板显示50.00,表示调 谐完成。经过调谐,变频器会自动计算出F1-06-F1-10的数值并写入。

参数	参数名称	默认值	设定范围	参数说明
F1-37	调谐选择	0	0:无操纵	0:无操作
			1: 异步机静止调谐	不调谐
			2: 异步机完整调谐	1: 异步机静止部分调谐
			3:异步机带载完整调	异步机静止部分参数调谐,电机与负载很难脱离,且不允许动态调谐
			谐	运行的场合。
			4:异步机惯量辨识(辨识部分电机参数:F1-06(异步电机定子电阻)、F1-07(异步电机
			仅支持FVC)	转子电阻)、F1-08(异步电机漏感抗)。
			11: 同步机空载部分调	2: 异步机动态完整调谐
			谐(不调反电动势)	电机与应用系统方便脱离的场合。
			12: 同步机动态空载调	辨识所有电机参数:F1-06(异步电机定子电阻)、F1-07(异步电机
			谐	转子电阻)、F1-08(异步电机漏感抗)、F1-09(异步电机互感抗
			13: 同步机完全静止调)、F1-10(异步电机空载电流)。
			谐	3: 异步机带载完整调谐
				异步机静止完整调谐,电机与负载很难脱离,且不允许动态完整调谐
				运行的场合。
				辨识所有电机参数: F1-06(异步电机定子电阻)、F1-07(异步电机
				转子电阻)、F1-08(异步电机漏感抗)、F1-09(异步电机互感抗
)、F1-10(异步电机空载电流)、F1-30(编码器相序)。
				4:异步机惯量辨识(仅支持FVC)
				11: 同步机静止部分调谐(不调反电动势)
				12: 同步机空载动态完整调谐
				13: 同步机完全静止调谐(不调谐编码器安装角)

2.2.7 设置命令源

设定参数F0-02,选择命令源。命令源是指运行指令的来源或输入方式,用于控制变频器的 启动、停止、正转、反转、点动运行等。

参数	参数名称	出厂值	设定范围	参数说明
F0-02	运行指令选	0	0:操作面板命令	选择变频器控制命令的输入通道。变频器控制命令包括:启动、停机、
	择		通道	正转、反转、点动等。
			1: 端子命令通道	0:操作面板命令通道
			2:通信命令通道	选择此命令通道,可通过操作面板上的按键输入控制命令,适用于初次
			3: 自定义命令通	调试。
			道	1: 端子命令通道
				选择此命令通道,可通过变频器的DI端子输入控制命令,DI端子控制命
				令根据不同场合进行设定,如启停、正反转、点动、二三线式、多段速
				等功能,适用于大多数场合。
				2: 通信命令通道
				选择此命令通道,可通过远程通信输入控制命令,变频器需要安装通信
				卡才能实现与上位机的通信。适用于远距离控制或多台设备系统集中控
				制等场合。
				3: 自定义命令通道
				选择此命令通道,可以灵活选择命令来源,用于扩展。

2.2.8 设置频率源

参数	参数名称	默认值	设定范围	参数说明
F0-03	主频率源X选	0	0:数字设定(掉电	0:数字设定(掉电不记忆)
	择		不记忆)	设定频率初始值为F0-08 "预置频率"的值。可通过键盘的▲键与▼
			1: 数字设定(掉电	键(或多功能输入端子的UP、DOWN)来改变变频器的设定频率
			记忆)	值。变频器掉电后并再次上电时,设定频率值恢复为F0-08 "数字设
			2: Al1	定预置频率"值。
			3: AI2	1: 数字设定(掉电记忆)
			4: AI3	设定频率初始值为F0-08 "预置频率"的值。可通过键盘的▲键与▼
			5: PULSE脉冲设定	键(或多功能输入端子的UP、DOWN)来改变变频器的设定频率
			(DI5)	值。变频器掉电后并再次上电时,设定频率为上次掉电时刻的设定频
			6: 多段指令	率,通过键盘▲、▼ 键或者端子UP、DOWN 的修正量被记忆。
			7:简易PLC	2: Al1
			8: PID	设定频率通过模拟量输入端子AI1输入,AI1端子输入电流或电压信号
			9:通信给定	,根据设定AI曲线来计算出对应的频率值。
			其他: F连接器	3: AI2
				设定频率通过模拟量输入端子AI2输入,AI2端子输入电流或电压信号
				,根据设定AI曲线来计算出对应的频率值。
				4: AI3
				设定频率通过模拟量输入端子AI3输入,AI3端子输入电流或电压信号
				,根据设定AI曲线来计算出对应的频率值。
				5: PULSE脉冲设定(DI5)
				设定频率通过DI输入端子DI5脉冲频率来给定,根据脉冲频率与设定
				频率的对应关系曲线计算出对应的频率值。
				选择多段指令做设定频率时,需要通过数字量输入DI端子的不同状态
				组合,对应不问的设定频率值。4个多段指令端于,可以组合为16种
				状态,这10个状态对应10个设定频率值。
				间易FLC定可以进门运门时间相加减迷时间控制的多技迷运门指マ。
				今数FC-00-FC-15皮上母技频举值,FC-16-FC-45皮直母技频举的运 行时间和加速速时间 是多可以设置16段速
				11时间和加减速时间,取多时以及且10段速。
				8. FID 洗坯了PID作为主频率 PID控制导过程控制的一种党田方注 通过
				浙水江里的及饭店与与白你店与的定里近门比例、小刀、饭刀运井, 通过调整变频器的输出频率、构成闭环系统、使被控量稳定在目标
				值。洗择PID 控制的输出作为设定频率。一般用于现场的工艺闭环控
				制。例如恒压力闭环控制。恒张力闭环控制等场合。
				9: 诵信给定
				装通信卡才能实现与上位机的通信。适用于远距离控制或多台设备系
				统集中控制等场合。
				其他:F连接器
				通过设置一个浮点连接器的功能码编号,读取该连接器的值作为辅助
				频率给定。用于常用来源之外的给定扩展。

2.2.9 设置控制模式

参数	参数名称	默认值	设定范围	参数说明
F0-01	第1电机控制方式	0	0: SVC 1: FVC 2: VF	 0:无速度传感器矢量控制(SVC) 无速度传感器矢量控制,是一种开环矢量控制,适用于通常的高性能控制场合,一台变频器只能驱动一台电机。如机床、离心机、拉丝机、注塑机等负载。 1:有速度传感器矢量控制(FVC) 有速度传感器矢量控制,是一种闭环矢量控制,电机端必须加装编码器,变频器必须选配与编码器同类型的PG卡。适用于高精度的速度控制或转矩控制的场合。一台变频器只能驱动一台电机。如高速造纸机械、起重机械、电梯等负载。 2:VF控制 适用于对负载控制性能要求不高的场合,如风机、泵类负载。当用于一台变频器拖动多台电机的场合时,只能使用V/f控制方式。

2.2.10设置Vf参数(可选)

参数	参数名称	默认值	设定范围	参数说明
F3-00	V/f曲线设定	0	0: 直线V/f曲线 1: 多点V/f曲线 2~9: 保留 10: V/f完全分离 模式 11: V/f半分离模 式	0: 直线V/f曲线 在额定频率以下,变频器的输出电压与输出频率成线性变化,适用于大惯 量风机加速、冲床、离心机、水泵等一般机械传动应用场合。 1: 多点V/f曲线 频率点设置范围为0.00Hz~电机额定频率,电压点设置范围为 0.0%~100.0%,对应0V~电机额定电压,多点V/f曲线的设定值通常根据电 机的负载特性来设定。务必如下设定:F3-03≤F3-05≤F3-07。 2~9: 保留 10: V/f完全分离模式 变频器的输出频率与输出电压相互独立,输出频率由频率源确定,而输出 电压由V/f分离电压源确定。一般应用在力矩电机控制等场合。 11: V/f半分离模式 这种情况下V与f是成比例的,但是比例关系可以通过电压源设置,且V与f 的关系也与第一组的电机额定电压与额定频率有关。假设电压源输入为 X(X为0-100%的值),则变频器输出电压V与频率f的关系为:V/f=2*X*(电机 额定电压)/(电机额定频率)

2.2.11设置SVC参数(可选)

参数	参数名称	设定范围	默认值	参数说明
F2-00	速度环比例增 益1	1~300	异步机: 30 同步机: 20	速度环PID控制参数的Kp,速度环Kp的大小影响电机速度的响应快 慢。Kp数值越大,调节灵敏度越高,调节力度越大;Kp数值越小,调 节灵敏度就越小,调节力度越小。低速速度环Kp是低速时使用。
F2-01	速度环积分时 间1	0.01s~10.0 Os	0.50s	速度环积分时间常数的倒数为积分增益,速度环积分时间常数的大小 影响电机稳态速度误差的大小及速度环系统的稳定性。速度环积分时 间常数增大,速度环响应变慢,此时需要增大速度环比例增益,以提 高速度环响应时间。低速速度环Ti是低速时使用。
F2-02	切换频率1	0.00Hz~ F2-05	5.00Hz	速度环PI参数分低速和高速两组。运行频率小于F2-02(切换频率1) 时,速度环PI调节参数为F2-00和F2-01;运行频率大于F2-05(切换频 率2)时,速度环PI调节参数为F2-03和F2-04。切换频率1和切换频率 2之间的速度环PI参数,为两组PI参数线性切换。该参数的设定值应小 于F2-05(切换频率2)。
F2-03	速度环比例增 益2	1~300	20	速度环PID控制参数的Kp,速度环Kp的大小影响电机速度的响应快 慢。Kp数值越大,调节灵敏度越高,调节力度越大;Kp数值越小,调 节灵敏度就越小,调节力度越小。高速速度环Kp是高速时使用的。
F2-04	速度环积分时 间2	0.01s~10.0 Os	1.00s	速度环积分时间常数的倒数为积分增益,速度环积分时间常数的大小 影响电机稳态速度误差的大小及速度环系统的稳定性。速度环积分时 间常数增大,速度环响应变慢,此时需要增大速度环比例增益,以提 高速度环响应时间。高速速度环Ti是高速时使用。
F2-05	切换频率2	F2-02~F0- 10	10.00Hz	速度环PI参数分低速和高速两组。运行频率小于F2-02(切换频率1) 时,速度环PI调节参数为F2-00和F2-01;运行频率大于F2-05(切换频 率2)时,速度环PI调节参数为F2-03和F2-04。切换频率1和切换频率 2之间的速度环PI参数,为两组PI参数线性切换。该参数的设定值应小 于F2-05(切换频率2)。
F2-06	矢量控制转差 增益	50%~200 %	100%	SVC控制模式下,此参数可调节电机的稳速精度,例如电机运行频率 低于变频器输出频率时,可增大该参数。FVC控制模式下,此参数可 以调节同样负载下变频器的输出电流大小,如在大功率变频器中,若 带载能力较弱时,可逐渐调小此参数。一般情况下,无需调整此参数 值。

2.2.12设置FVC参数(可选)

参数	参数名称	设定范围	默认值	参数说明
F1-27	编码器线数	1~65535	1024	编码器线数是指编码器码盘每转一圈发出的脉冲数。在有速度
				传感器矢量控制模式下(FVC),必须正确设置编码器脉冲数,
				否则电机运行异常。
F1-28	编码器类型	0: ABZ增量编	0	编码器分为增量式和绝对式两类。
		码器		● 增量式编码器是将位移转换成周期性的电信号,再把这个电信
		1:23位编码器		号转变成计数脉冲,用脉冲的个数表示位移的大小。
		2: 旋变编码器		●绝对式编码器的每一个位置对应一个确定的数字码,因此它的
		3: 外部输入		示值只与测量的起始和终止位置有关,而与测量的中间过程无
		4:正余弦编码		关。
		器		

参数	参数名称	设定范围	默认值	参数说明
F1-34	旋变极对数	1~65535	1	旋转变压器是一种电磁式传感器,又称同步分解器。它是一种 测量角度用的小型交流电动机,用来测量旋转物体的转轴角位 移和角速度,由定子和转子组成。旋变极对数是指旋转变压器 的磁极对数,极对数越高,精度越高。
F2-00	速度环比例增益1	1~300	异步机: 30 同步机: 20	速度环PID控制参数的Kp,速度环Kp的大小影响电机速度的响 应快慢。Kp数值越大,调节灵敏度越高,调节力度越大;Kp数 值越小,调节灵敏度就越小,调节力度越小。低速速度环Kp是 低速时使用。
F2-01	速度环积分时间1	0.01s~10.00s	0.50s	速度环积分时间常数的倒数为积分增益,速度环积分时间常数 的大小影响电机稳态速度误差的大小及速度环系统的稳定性。 速度环积分时间常数增大,速度环响应变慢,此时需要增大速 度环比例增益,以提高速度环响应时间。低速速度环Ti是低速 时使用。
F2-02	切换频率1	0.00Hz~F2-05	5.00Hz	速度环PI参数分低速和高速两组。运行频率小于F2-02(切换频 率1)时,速度环PI调节参数为F2-00和F2-01;运行频率大于 F2-05(切换频率2)时,速度环PI调节参数为F2-03和F2-04。 切换频率1和切换频率2之间的速度环PI参数,为两组PI参数线 性切换。该参数的设定值应小于F2-05(切换频率2)。
F2-03	速度环比例增益2	1~300	20	速度环PID控制参数的Kp,速度环Kp的大小影响电机速度的响 应快慢。Kp数值越大,调节灵敏度越高,调节力度越大;Kp数 值越小,调节灵敏度就越小,调节力度越小。高速速度环Kp是 高速时使用的。
F2-04	速度环积分时间2	0.01s~10.00s	1.00s	速度环积分时间常数的倒数为积分增益,速度环积分时间常数 的大小影响电机稳态速度误差的大小及速度环系统的稳定性。 速度环积分时间常数增大,速度环响应变慢,此时需要增大速 度环比例增益,以提高速度环响应时间。高速速度环Ti是高速 时使用。
F2-05	切换频率2	F2-02~F0-10	10.00Hz	速度环PI参数分低速和高速两组。运行频率小于F2-02(切换频 率1)时,速度环PI调节参数为F2-00和F2-01;运行频率大于 F2-05(切换频率2)时,速度环PI调节参数为F2-03和F2-04。 切换频率1和切换频率2之间的速度环PI参数,为两组PI参数线 性切换。该参数的设定值应小于F2-05(切换频率2)。
F2-06	矢量控制转差增益	50%~200%	100%	SVC控制模式下,此参数可调节电机的稳速精度,例如电机运行 频率低于变频器输出频率时,可增大该参数。FVC控制模式下 ,此参数可以调节同样负载下变频器的输出电流大小,如在大 功率变频器中,若带载能力较弱时,可逐渐调小此参数。一般 情况下,无需调整此参数值。
F2-07	SVC速度反馈滤波时 间	0.000s~0.100s	0.015s	在FVC控制模式下(F0-01=1),速度环反馈滤波时间有效,通 过调节该参数改善电机稳定性,速度环反馈滤波时间增大,可 以改善电机稳定性,动态响应变弱;速度环反馈滤波时间减小 ,动态响应加强。该参数值过小时会引起电机震荡。一般情况 下,电机的稳定性可满足要求,无需调节该参数。

2.2.13设置PMVVC参数(可选)

参数	参数名称	设定范围	默认值	参数说明
F0-01	第1电机控制 方式	0: SVC 1: FVC 2: VF	0	 0: SVC控制(无速度传感器矢量控制) 无速度传感器矢量控制,是一种开环矢量控制,适用于通常的高性能控制场合,一台变频器只能驱动一台电机。如机床、离心机、拉丝机、注塑机等负载。 1: FVC控制(有速度传感器矢量控制) 有速度传感器矢量控制,是一种闭环矢量控制,电机端必须加装编码器,变频器必须选配与编码器同类型的PG卡。适用于高精度的速度控制或转矩控制的场合。一台变频器只能驱动一台电机。如高速造纸机械、起重机械、电梯等负载。 2: VF 控制(速度开环控制) 适用于对负载控制性能要求不高的场合,如风机、泵类负载。当用于一台变频器拖动多台电机的场合时,只能使用V/f控制方式。
F1-00	电机类型选择	0: 普通异步电机 1: 变频异步电机 2: 永磁同步电机 3: 无助磁磁阻电机 4: 电磁线圈	0	变频电机的特点是根据负荷调整频率,改变转速。电压低的地 方,变频电机可以降低频率,可靠启动;负荷轻的地方,可以 用变频电机降低频率,减少转速和电流,节约电能。 普通异步电动机适用于电压正常但经常满负荷的场所。由于是 按恒频恒压设计,不可能完全适应变频调速的要求。 无助磁磁阻电机是一种不含永磁体的同步电机,它的出力完全 由交直轴电感差异带来的磁阻转矩提供。
F1-37	调谐选择	 5: 无操纵 5: 异步机静止部分调谐 7: 异步机动态调谐 7: 异步机静止完整调谐 4: 惯量辨识 5: 死区辨识 11: 同步机带载调谐(不 辨反电动势) 12: 同步机动态空载调谐 13: 同步机带载旋转调谐 (不调零点角度) 14: UV增益相间偏差辨识 15: 磁阻电机MTPA制表 	0	-
A9-40	摩擦曲线转矩 点4	-320.00N·m~320.00N·m	0.00N· m	-
A9-41	摩擦曲线转矩 点5	-320.00N · m~320.00N · m	0.00N· m	-
A9-42	摩擦曲线转矩 点6	-320.00N · m~320.00N · m	0.00N · m	-
A9-43	摩擦曲线转矩 点7	-320.00N·m~320.00N·m	0.00N· m	-

2.2.14设定加减速时间

参数	参数名称	默认值	设定范围	参数说明
F0-17	加速时间1	20.0s	0.0s~6500.0s	加速时间是指输出频率从0上升到F0-25(加减速时间基准频 率)所需时间,通常用频率设定信号上升来确定加速时间。 在电动机加速时须限制频率设定的上升率以防止过电流。 加速时间设定要求:将加速电流限制在变频器过电流容量以 下,不使过流失速而引起变频器跳闸。
F0-18	减速时间1	20.0s	0.0s~6500.0s	减速时间是指输出频率从F0-25(加减速时间基准频率)下降 到0所需时间,通常用频率设定信号下降来确定减速时间。在 电动机减速时须限制频率设定的下降率以防止过电压。 减速时间设定要求:防止平滑电路电压过大,不使再生过压 失速而使变频器跳闸。
F0-25	加减速时间 基准频率	0	0:最大频率(F0-10) 1:目标频率 2:100Hz	加减速时间基准频率,用于加速时的目标频率,减速时的起 始频率。

2.2.15设置启动方式(可选)

参数	参数名称	默认值	设定范围	参数说明
F6-00	启动方式	0	0: 直接启动	0: 直接启动
			1:转速跟踪启动	变频器直接启动,适用于大多数负载,启动前加"启动频率"适
			2:预励磁启动(交	用于电梯、起重等提升类负载场合。
			流异步电机)	1:转速跟踪启动
			3: SVC快速启动	适用于启动时电机不是静止状态的场合,比如大惯量风机短时停
				电后再启动。在某些场合,变频器启动前电机已经处于旋转状态
				,变频器能自动跟踪电动机的转速和方向,对旋转中的电动机实
				施平滑无冲击启动。例如变频器在运行中,由于电网瞬时掉电,
				导致变频器掉电再启动,由于惯性,电机处于旋转状态。在这种
				状态下,要想重新控制异步电机,变频器必须首先检测出电机当
				前的实际转速,否则在启动过程中会造成变频器过流、过压等故
				障情况,严重的可能烧毁变频器功率管。
				2: 矢量预励磁启动(异步机)
				适用于负载静止阻力很大,需要很大启动转矩的场合,预励磁启
				动可以增大启动转矩。该方式只适用于异步电机的SVC 与FVC 控
				制模式,启动前对电机进行预励磁,可以提高电机的快速响应和
				减小启动电流,启动时序与直流制动再启动一致。
				3: SVC快速启动
				变频器SVC快速,适用于大多数负载,启动前加"启动频率"适
				用于电梯、起重等提升类负载场合。
				注意:如果需要启动正在高速旋转的电机建议使用转速跟踪再启
				动; 预励磁启动和SVC快速启动只能用于交流异步机。

2.2.16设定启动频率(可选)

参数	参数名称	默认值	设定范围	参数说明
F6-03	启动频率	0.00Hz	0.00Hz~10.00Hz	变频器直接启动的启动频率值。当启动频率值高于给定频率时, 变频器处于待机状态,不会启动。
F6-04	启动频率保持时 间	0.0s	0.0s~100.0s	输出频率为启动频率并保持一段时间,时间(该设定值)到达后 ,输出频率才加速至给定频率。

2.2.17设定S曲线(可选)

参数	参数名称	默认值	设定范围	参数说明
F6-07	加减速方式	0	0: 直线加减速 1: S曲线加减 速	选择变频器在启、停动过程中频率变化的方式。 0:输出频率按照直线递增或递减。 1:在目标频率实时动态变化的情况下,输出频率按照S曲线实时 递增或递减。适用在舒适感要求较高及实时响应快速的场合。
F6-08	S曲线开始段时间比 例	30.0%	0.0%~(100.0%- F6-09)	F6-08(S曲线开始段时间比例)与F6-09(S曲线结束段时间比例)之和要小于等于100%。
F6-09	S曲线结束段时间比 例	30.0%	0.0%~(100.0%- F6-08)	F6-08(S曲线开始段时间比例)与F6-09(S曲线结束段时间比例)之和要小于等于100%。

2.2.18设定停机参数

参数	参数名称	设定范围	默认值	参数说明
F6-10	停机方式	0: 减速停车 1: 自由停车 2: 最大能力停 机	0	 0:减速停车 停机命令有效后,变频器按照减速时间降低输出频率,频率降为0 后停机。 1:自由停车 停机命令有效后,变频器立即终止输出,此时电机按照机械惯性自由停车。
F6-11	停机直流制动起始频 率	0.00Hz~F0-10	0.00Hz	减速停机过程中,当运行频率降低到到该频率时,开始直流制动过 程。
F6-12	停机直流制动等待时 间	0.0s~100.0s	0.0s	在运行频率降低到停机直流制动起始频率后,变频器先停止输出一 段时间,然后再开始直流制动过程。用于防止在较高速度时开始直 流制动可能引起的过流等故障。
F6-13	停机直流制动电流	0%~100%	50%	停车直流制动电流,直流制动电流越大,制动力越大,100%对应 电机额定电流(电流上限为变频器额定电流的80%)。 可通过F6-34设置电流上限,最大将电流上限设置为变频器额定电 流的135%。
F6-14	停机直流制动时间	0.0s~100.0s	0.0s	直流制动量保持的时间。此值为0则直流制动过程取消。

2.2.19AI设置(可选)

AI端子的不同功能,通过主控板上的拨码开关切换,见下表。

拨码开关图	拨码开关状态			市台站田
示	S1	S2	S3	均限切り
	OFF	OFF	OFF	AI2电压模式,DC 0V~10V
OF 51 52 53	ON	OFF	OFF	Al2温度模式。 可通过F9-75设置温度传感器类型: 0: 无温度传感器 (Al通道作为模拟量输 入) 1: PT100, -25°C~200°C 2: PT1000, -25°C~200°C 3: KTY84-130, -40°C~260°C 4: PTC130, -20°C~180°C
	OFF	ON	OFF	Al2电流模式,0mA~20mA,输入阻抗 500Ω
	OFF	ON	ON	Al2电流模式,0mA~40mA,输入阻抗 250Ω

表2-3 拨码开关S1~S3说明

S1、S2、S3为组合使用拨码开关,建议使用第48页"表2-3"推荐的拨码开关状态。

↔ #L				
参数	切能定义	设定氾固	款认1直	参
F4-13	AI曲线1最小输	-10.00V~F4-15	0.00V	AI曲线1设置参数,其中F4-13和F4-15互锁。
	Л			
F4-14	AI曲线1最小输	-100.0%~100.0%	0.0%	
	入对应设定			
F4-15	AI曲线1最大输	F4-13~10.00V	10.00V	
	Л			
F4-16	AI曲线1最大输	-100.0%~100.0%	100.0%	
	入对应设定			
F4-17	AI1滤波时间	0.00s~10.00s	0.10s	Al1滤波处理的时间系数设置。
F4-18	AI曲线2最小输	-10.00V~F4-20	0.00V	AI曲线2设置参数,其中F4-18和F4-20互锁。
	Л			
F4-19	AI曲线2最小输	-100.0%~100.0%	0.0%	
	入对应设定			
F4-20	AI曲线2最大输	F4-18~10.00V	10.00V	
	Л			
F4-21	AI曲线2最大输	-100.0%~100.0%	100.0%	
	入对应设定			
F4-22	AI2滤波时间	0.00s~10.00s	0.10s	AI2滤波处理的时间系数设置。

表2--4 相关参数

参数功能定义	设定范围	默认值	参数说明
F4-23 AI曲线3最小输 -10 入	.0.00V~F4-25	-10.00V	AI曲线3设置参数,其中F4-23和F4-25互锁。
F4-24 AI曲线3最小输 -10 入对应设定	.00.0%~100.0%	-100.0%	
F4-25 AI曲线3最大输 F4 入	4-23~10.00V	10.00V	
F4-26 AI曲线3最大输 -10 入对应设定	.00.0%~100.0%	100.0%	
F4-27 AI3滤波时间 0.0	.00s~10.00s	0.10s	AI3滤波处理的时间系数设置
F4-27 Al3滤波时间 0.0 F4-33 Al曲线选择 个 1: 13 2: 13 2: 18 3: 23 4: 00 5: 00 5: 8 ++ 11: 13 2: 12: 18 3: 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 13: 2: 18 14: 13 2: 15: 18 3: 16: 13: 2: 18: 3: 2: 18: 3: 2: 18: 3: 2: 18:	0005-01.005 (位: Al1曲线选择 : 曲线1 (2点, F4- 3-F4-16) : 曲线2 (2点, F4- 8-F4-21) : 曲线2 (2点, F4- 3-F4-26) : 曲线2 (2点, F4- 3-F4-26) : 曲线2 (2点, F4- 3-F4-16) : 曲线2 (2点, F4- 3-F4-16) : 曲线2 (2点, F4- 3-F4-16) : 曲线3 (2点, F4- 3-F4-26) : 曲线3 (2点, F4- 3-F4-26) : 曲线5 (4点, A6- 0-A6-07) : 曲线5 (4点, A6- 0-A6-07) : 曲线5 (4点, F4- 3-F4-16) : 曲线1 (2点, F4- 3-F4-16) : 曲线3 (2点, F4- 3-F4-26) : 曲线4 (4点, A6- 0-A6-07) : 曲线5 (4点, A6- 0-A6-07) : 曲线5 (4点, A6- 0-A6-07)	801	A13% 波尔在50分间 家 30 位 通过个位~百位分别设置模拟量输入端子A1x(x为1~3)的 曲线选择。

参数	功能定义	设定范围	默认值	参数说明
A6-00	AI曲线4最小输 入	-10.00V~A6-02	0.00V	AI曲线4设置参数,其中A6-00、A6-02、A6-04和A6-06互 锁。
A6-01	AI曲线4最小输 入对应设定	-100.0%~100.0%	0.0%	
A6-02	AI曲线4拐点1 输入	A6-00~A6-04	3.00V	
A6-03	AI曲线4拐点1 输入对应设定	-100.0%~100.0%	30.0%	
A6-04	AI曲线4拐点2 输入	A6-02~A6-06	6.00V	
A6-05	AI曲线4拐点2 输入对应设定	-100.0%~100.0%	60.0%	
A6-06	AI曲线4最大输 入	A6-04~10.00V	10.00V	
A6-07	AI曲线4最大输 入对应设定	-100.0%~100.0%	100.0%	
A6-08	AI曲线5最小输 入	-10.00V~A6-10	-10.00V	AI曲线5设置参数,其中A6-08、A6-10、A6-12和A6-14互 锁。
A6-09	AI曲线5最小输 入对应设定	-100.0%~100.0%	-100.0%	
A6-10	AI曲线5拐点1 输入	A6-08~A6-12	-3.00V	
A6-11	AI曲线5拐点1 输入对应设定	-100.0%~100.0%	-30.0%	
A6-12	AI曲线5拐点2 输入	A6-10~A6-14	3.00V	
A6-13	AI曲线5拐点2 输入对应设定	-100.0%~100.0%	30.0%	
A6-14	AI曲线5最大输 入	A6-12~10.00V	10.00V	
A6-15	AI曲线5最大输 入对应设定	-100.0%~100.0%	100.0%	
A6-24	Al1设定跳跃点	-100.0%~100.0%	0.0%	设置Al1跳跃点,如果本次输入相对跳跃点,在A6-25设置 的跳跃幅度范围内,则输出跳跃点的值。
A6-25	Al1设定跳跃幅 度	0.0%~100.0%	0.1%	设置Al1跳跃幅度,如果本次输入相对A6-24设置跳跃点, 在A6-25设置的跳跃幅度范围内,则输出跳跃点的值。
A6-26	AI2设定跳跃点	-100.0%~100.0%	0.0%	设置AI2跳跃点,如果本次输入相对跳跃点,在A6-27设置 的跳跃幅度范围内,则输出跳跃点的值。
A6-27	Al2设定跳跃幅 度	0.0%~100.0%	0.1%	设置AI2跳跃幅度,如果本次输入相对A6-26设置跳跃点, 在A6-27设置的跳跃幅度范围内,则输出跳跃点的值。
A6-28	AI3设定跳跃点	-100.0%~100.0%	0.0%	设置AI3跳跃点,如果本次输入相对跳跃点,在A6-29设置 的跳跃幅度范围内,则输出跳跃点的值。
A6-29	Al3设定跳跃幅 度	0.0%~100.0%	0.1%	设置AI3跳跃幅度,如果本次输入相对A6-28设置跳跃点, 在A6-29设置的跳跃幅度范围内,则输出跳跃点的值。

参数	功能定义	设定范围	默认值	参数说明
A6-30	AI自动调整曲线	个位:选点(用于设置)	0	-
		0:关闭		
		1: 选第一点		
		2:选第二点		
		3:选第三点		
		4:选第四点		
		十位:选AI通道(用于设置)		
		0:关闭		
		1:选择Al1		
		2:选择Al2		
		3:选择Al3		
		百位: 使能控制(用于设置)		
		0: 禁止		
		1: 使能		
		千位:X点曲线(用于显示)		
		0:没选使能,或没选通道		
		2: 两点曲线		
		4:四点曲线		
		万位:保留		
A6-31	AI1输入使能	0: 禁止	1	-
		1: 使能		
		其他: B连接器		
A6-32	AI2输入使能	0: 禁止	1	-
		1: 使能		
		其他: B连接器		
A6-33	AI3输入使能	0: 禁止	1	-
		1: 使能		
		其他: B连接器		
A6-34	AI极性选择	个位: Al1选择	0	-
		0: 正常		
		1: 绝对值		
		2: 取反		
		3: 绝对值取反		
		十位: AI2选择		
		0: 正常		
		1: 绝对值		
		2: 取反		
		3: 绝对值取反		
		百位: AI3选择		
		0: 正常		
		1: 绝对值		
		2: 取反		
		3: 绝对值取反		

参数	功能定义	设定范围	默认值	参数说明
A6-35	AI硬件来源选择	个位: Al1来源	0	当来源选择为"0:硬件采样"时,AI值来自于硬件采样
		0:硬件采样		;
		1: 强制设定值		当来源选择为"1:强制设定值"时,可以通过功能码A6-
		十位: AI2来源		36~A6-38 强制设置AI值。
		0:硬件采样		
		1: 强制设定值		
		百位: AI3来源		
		0: 健件米样		
		1: 强制设定值		
A6-36	AI1强制设定值	-10.00V~10.00V	0.00V	当A6-35个位来源选择为"1:强制设定值"时,可以通过
				功能码A6-36强制设置AI1值。
A6-37	AI2强制设定值	-10.00V~10.00V	0.00V	当A6-35十位来源选择为"1:强制设定值"时,可以通过
				功能码A6-37强制设置AI2值。
A6-38	AI3强制设定值	-10.00V~10.00V	0.00V	当A6-35百位来源选择为"1:强制设定值"时,可以通过
				功能码A6-38强制设置Al3值。
A6-39	AI做di高电平	5.5V~9.0V	7.0V	AI做DI判定为高电平的阈值设定。
A6-40	AI做di低电平	1.0V~4.5V	3.0V	AI做DI判定为低电平的阈值设定。
A6-41	Al1增益	-10.00~10.00	1.00	设置AI1模拟采样量的增益倍数。
A6-42	Al1偏移	-10.00V~10.00V	0.00V	设置AI1模拟采样量的偏移量。
A6-43	AI1去噪阈值	0.0%~100.0%	0.0%	设置Al1去噪阈值,如果本次输入相对上次输入的差值的
				绝对值,在阈值范围内,则去噪处理。
A6-44	AI1死区宽度	0.0%~100.0%	0.0%	设置Al1死区宽度,该区范围内输出为0.0%,用于消除零
				附近的波动。
A6-47	AI2增益	-10.00~10.00	1.00	设置AI2模拟采样量的增益倍数。
A6-48	AI2偏移	-10.00V~10.00V	0.00V	设置AI2模拟采样量的偏移量。
A6-49	AI2去噪阈值	0.0%~100.0%	0.0%	设置Al2去噪阈值,如果本次输入相对上次输入的差值的
				绝对值,在阈值范围内,则去噪处理。
A6-50	AI2死区宽度	0.0%~100.0%	0.0%	设置Al2死区宽度,该区范围内输出为0.0%,用于消除零
				附近的波动。
A6-53	AI3增益	-10.00~10.00	1.00	设置AI3模拟采样量的增益倍数。
A6-54	AI3偏移	-10.00V~10.00V	0.00V	设置AI3模拟采样量的偏移量。
A6-55	AI3去噪阈值	0.0%~100.0%	0.0%	设置Al3去噪阈值,如果本次输入相对上次输入的差值的
				绝对值,在阈值范围内,则去噪处理。
A6-56	AI3死区宽度	0.0%~100.0%	0.0%	设置AI3死区宽度,该区范围内输出为0.0%,用于消除零
				附近的波动。

2.2.20AO设置(可选)

参数	参数名称	默认值	设定范围	参数说明
F5-07	AO1输出功能选择	0	0:运行频率	如下
	扩展卡AO2输出功能 选择		1: 设定频率	
		1	2: 输出电流	
			3:输出转矩(绝对值)	
			4: 输出功率	
			5: 输出电压	
			6: PULSE输入	
			7: All	
			8: AI2	
			9: AI3	
F5-08			10: 长度	
			11: 计数值	
			12: 通信设定	
			13: 电机转速	
			14: 输出电流(100.0% 对应	
			1000: 1000.0A)	
			15: 母线电压(100.0% 对应	
			1000: 1000.0V)	
			16: 输出转矩(实际值)	
			其他: F连接器	

表2–5 功能描述

设定值	功能定义	功能范围
0	运行频率	0~最大输出频率,100.0%对应最大频率F0-10
1	设定频率	0~最大输出频率
2	输出电流	0~2倍电机额定电流,100.0%对应2倍电机额定电流
3	电机输出转矩	0~电机额定转矩,100.0%对应电机额定转矩(绝对值,相对电机的百分比)
4	输出功率	0~2倍额定功率,100.0%对应2倍电机额定功率
5	输出电压	0~1.2倍变频器额定电压,100.0%对应1.2倍变频器额定电压
6	脉冲输入	0.01kHz~100.00kHz,100.0% 对应100.0KHz
7	All	-10V~10V, 100.0% 对应10V
8	AI2	-10V~10V(或者0~20mA或者0~40mA),100.0% 对应10V
9	AI3	-10V~10V, 100.0% 对应10V
10	长度	0~最大设定长度,100.0% 对应FB-05
11	计数值	0~最大计数值,100.0% 对应FB-08
12	通讯设定	0.0%~100.0%,100.0%对应AO通讯设定
13	电机转速	0~最大输出频率对应的转速,100.0% 对应最大频率F0-10
14	输出电流	0.0A~1000.0A,100.0% 对应1000.0A
15	输出电压	0.0V~1000.0V,100.0% 对应1000.0V
16	电机输出转矩(实际值,相对	-2倍电机额定转矩~2倍电机额定转矩,100.0%对2倍电机额定转矩,50%对
	电机的百分比)	应0,0对应-2倍电机额定转矩

2.2.21DI设置(可选)

参数	参数名称	默认值	ì	参数说明	
F4-00	DI1端子功能选择	1	0:无功能	34:频率修改使能	如下
F4-01	DI2端子功能选择	4	1: 正转运行(IN1)	35: PID作用方向取反	
F4-02	DI3端子功能选择	9	2:反转运行(IN2)	36: 外部停车端子1	
F4-03	DI4端子功能选择	12	3:三线式运行控制(IN3)	37:控制命令切换端子2	
F4-04	DI5端子功能选择	13	4:正转点动(FJOG)	38: PID积分暂停	
E4-05	DI6端子功能选择	0	5:反转点动(RJOG)	39: 主频率X与预置频率切换	
T 4 00	ロス端フロ北洋な	0	6:频率UP调节	40: 辅频率Y与预置频率切换	
F4-06	DIT端于切能远择	0	7:频率DOWN调节	41: 电机选择端子1	
F4-07	DI8端子切能选择	0	8:目由停车	42: 保留	
F4-08	DI9端子功能选择	0	9:故障复位(RESET)	43: PID参数切换	
F4-09	DI10端子功能选择	0	10: 运行暂停	44: 用户目定义故障1	
			11:外部故障常开输入	45: 用户目定义故障2	
			12: 多段指令端子1	46: 速度控制/转矩控制选择	
			13: 多段指令端子2	47: 紧急停车	
			14: 多段指令端子3	48:外部停车端子2	
			15: 多段指令端子4	49: 减速直流制动	
			16: 加减速选择端子1	50:本次运行时间清零	
			17:加减速选择端子2	51:预留	
			18: 频率指令切换	52: 禁止反转	
			19: UP/DOWN调节量清零	64:正向限位开关	
			20: 控制命令切换端子1	65:反向限位开关	
			21:加减速禁止	66:水冷故障输入	
			22: PID暂停	67: 低液位故障输入	
			23: 简易PLC状态复位	70: 控制通道选择	
			24: 摆频暂停	71:设定通道选择(保留)	
			25: 计数器输入	72:端子模块A/B选择	
			26: 计数器复位	73: 启动选择BIT0	
			27:长度计数输入	74: 启动选择BIT1	
			28: 长度复位	75: 控制命令切换端子3	
			29:转矩控制禁止	76: 电机选择端子2	
			30:脉冲频率输入(仅DI5生效)	77:运行使能	
			31: 保留	78: 正向运行允许	
			32: 立即直流制动	79: 负向运行允许	
			33:外部故障常闭输入	80: RFG输入置零	
				86:断线检测(拉丝机)	

说明

F4-00~F4-03,F4-05~F4-09没有30:脉冲频率输入功能,只有F4-04有30:脉冲频率输入功能。

0:无功能

DI端子无任何功能。

1: 正转运行

变频器的运行方式为正转运行。FWD,即FORWORD。两线式1(F4-11=0)时为正向运 行;两线式2(F4-11=1)时为运行命令。

2: 反转运行

变频器的运行方式为反转运行。REV,即REVERSE。三线式1(F4-11=2)时为反向运行; 三线式2(F4-11=3)时为正反运行方向。

3: 三线式运行控制(IN3)

确定变频器运行方式是三线控制模式。如果要通过端子设定运行指令,参数F4-11(端子命 令方式)设置为2(三线式1)或者3(三线式2),端子功能要设置为此功能。三线控制模 式包括三线式1和三线式2两种模式。

4: 正转点动 (FJOG)

变频器的运行方式为正转点动运行。点动模式下,变频器短暂低速运行,一般用于对现场 设备进行维护和调试的场景。

5: 反转点动 (RJOG)

变频器的运行方式为反转点动运行。

6: 频率UP调节

通过端子给定频率时修改频率的递增指令。端子有效相当于一直按着递增键,端子无效相 当于松开递增键。

7: 频率DOWN调节

通过端子给定频率时修改频率的递减指令。端子有效相当于一直按着递减键,端子无效相 当于松开递减键。

8: 自由停车

变频器接到停机命令后,立即中止输出,负载按照机械惯性自由停止。变频器通过停止输 出来停机,这时,电动机的电源被切断,拖动系统处于自由制动状态。由于停机时间的长短由 拖动系统的惯性决定,也称为惯性停机。

9:故障复位(RESET):对变频器的故障进行复位,与键盘上的STOP/RES键功能相同。 用此功能可实现远距离故障复位。

10: 运行暂停

端子选择此功能,变频器进行减速停车,所有运行参数均被记忆(如PLC 参数、摆频参数、PID 参数)。端子无效后,变频器恢复之前所记忆的运行状态。

11: 外部故障常开输入

当外部信号送给变频器后,变频器报故障Err15。

12~15: 多段指令端子1~4

变频器选择多段指令作为主频率。可通过这四个端子的16 种状态,实现16 段速度或者16 个指令的设定。应用场景:不需要连续调整变频器运行频率,只需使用若干个频率值的应 用场合。

16、17:加减速选择端子1~2

MD520提供4 组加减速时间,通过这两个端子的4 种状态,可实现4 组加减速时间的切换。

加速时间指变频器从零频,加速到加减速基准频率(F0-25 确定) 所需时间; 减速时间指变频 器从加减速基准频率(F0-25 确定),减速到零频所需时间。

18: 频率源切换

用来选择不同的频率指令输入方法。通过F0-07(频率指令叠加选择)设置频率指令。

19: UP/DOWN设定清零

当通过面板设定主频率时,端子有效时可清除已设置的频率值(该频率值是指通过键盘上 递增键、递减键或者端子UP/端子DOWN所设置的频率值),使给定频率恢复到F0-08 设定 的值。

- 20: 控制命令切换端子1
- 当通过端子设置运行指令时(F0-02=1),端子有效时可进行端子控制与键盘控制的切换。
- 当通过通讯设置运行指令时(F0-02=2),端子有效时可进行通讯控制与键盘控制的切换。
- 21: 加减速禁止

变频器维持当前运行频率(停机命令除外),不受外部输入频率变化的影响。

- 22: PID暂停
- PID 暂时失效,变频器维持当前的输出频率,不再进行频率源的PID 调节。
- 23: 简易PLC状态复位
- 使变频器恢复到简易PLC 的初始状态。
- 24: 摆频暂停

在摆频工艺功能中,端子有效时使摆频功能暂停(变频器以中心频率输出)。

- 25: 计数器输入
- 在计数工艺功能中, 端子有效时输入计数脉冲。
- 26: 计数器复位
- 在计数工艺功能中,端子有效时对计数器状态进行清零处理。
- 27:长度计数输入
- 在定长工艺功能中,端子有效时输入长度计数。
- 28: 长度复位
- 在定长工艺功能中,端子有效时使长度清零。
- 29: 转矩控制禁止

端子有效时,变频器进行转矩控制模式到速度控制模式的切换;端子无效时,恢复到转矩 控制模式。

30: 脉冲输入

当DI5 作为脉冲输入的端子时,DI5 端子必须选择此功能。

- 31: 保留
- 32: 立即直流制动

变频器直接切换到直流制动状态。直流制动是指变频器向异步电动机定子绕组中通入直 流,形成静止磁场,此时电动机处于能耗制动状态,转子切割该静止磁场而产生制动转 矩,使电动机迅速停止。

33: 外部故障常闭输入

当外部信号送给变频器后,变频器报出故障Err15。

34: 频率修改使能

如果端子有效,允许修改频率;如果端子无效,禁止修改频率。

35: PID作用方向取反

PID 作用方向与FA-03(PID 作用方向)设定的方向相反。

36: 外部停车端子1

当通过操作面板设置运行指令时(F0-02=0),使变频器停机,相当于键盘上STOP/RES 键 的功能。

37: 控制命令切换端子2

在端子和通讯设定运行指令之间进行切换。

- 如果用端子控制运行命令,端子有效时系统切换为通讯控制。
- 如果用通讯控制运行命令,端子有效时系统切换为端子控制。
- 38: PID 积分暂停

PID 的积分调节功能暂停,但PID的比例调节和微分调节功能仍然有效。

39: 频率源X与预置频率切换

主频率源x切换为F0-08(预置频率)。

40: 频率源Y与预置频率切换

辅频率源y切换为F0-08(预置频率)。

41、76: 电机选择端子1~4

选择电机参数。例如设置DI1和DI2的功能分别为41和76,则DI1和DI2都无效时选择电机1; DI1有效,DI2无效时选择电机2;DI1无效,DI2有效时选择电机3;DI1和DI2都有效时选择 电机4。

42: 保留

43: PID参数切换

当PID参数切换条件设置为"通过DI端子切换"时(FA-18=1)

- 若端子无效,PID参数使用FA-05~FA-07(比例增益KP1、积分时间TI1、微分时间 TD1)的设定值。
- 若端子有效,PID参数使用FA-15~FA-17(比例增益KP2、积分时间TI2、微分时间 TD2)的设定值。

44: 用户自定义故障1

变频器报故障Err27,变频器会根据F9-49(故障保护动作选择)的设定值进行处理。 45:用户自定义故障2 变频器报故障Err28,变频器会根据F9-49(故障保护动作选择)的设定值进行处理。

46: 速度控制/转矩控制切换

变频器在转矩控制与速度控制模式之间切换:

- A0-00(速度/转矩控制方式)设置为0,端子有效时,控制方式为转矩模式;端子无效时,控制方式为速度模式。
- A0-00(速度/转矩控制方式)设置为1,端子有效时,控制方式为速度模式;端子无效时,控制方式为转矩模式。

47: 紧急停车

系统处于紧急状态时,变频器按照F8-55(端子急停减速时间)减速,V/f模式急停减速时 间为0s时按照最小单位时间进行减速。该输入端子无需持续处于闭合状态,即使处于闭合 状态的时间仅仅为一瞬间,也会紧急停止。与一般的减速时间不同,在经过紧急停止减速 时间后断开紧急停车输入端子,如果此时变频器端子运行信号仍处于闭合状态,变频器也 不会启动,需先断开运行端子后再次输入端子运行指令,变频器才会重新起动。

48: 外部停车端子2

在任何运行指令方式下(面板控制、端子控制、通讯控制),变频器减速停车。此时减速时间固定为减速时间4(F8-08)。

49: 减速直流制动

变频器先减速到F6-11(停机直流制动起始频率),然后进入直流制动状态。

50:本次运行时间清零

变频器本次运行计时时间被清零。

- 如果本次运行时间小于F8-53(本次运行到达时间)的设定值(大于0),在此过程中端 子有效,本次运行计时清零。
- 如果本次运行时间大于F8-53的设定值(大于0),此时端子有效,本次运行计时不清零。

51: 两线制/三线制切换,用于在两线式和三线式控制之间进行切换:

- F4-11 设为0(两线式1),端子有效时,切换为三线式1。端子无效时,为两线式1。
- F4-11 设为1(两线式2),端子有效时,切换为三线式2。端子无效时,为两线式2。
- F4-11 设为2(三线式1),端子有效时,切换为两线式1。端子无效时,为三线式1。
- F4-11 设为3(三线式2),端子有效时,切换为两线式2。端子无效时,为三线式2。

52: 禁止反转

- 端子有效时,即使设定了反向频率,但变频器实际设定频率被限定为0。与反向频率禁止 (F8-13)功能相同。
- 64:正向限位开关
- 65:反向限位开关
- 66:水冷故障输入
- 当外部信号发送给变频器后,使能该端子报Err64。
- 67:低液位故障输入

当外部信号发送给变频器后,使能该端子报警告66(F9-50千位为2时)或者Err66(F9-50千位 为0时)。

68~69: 保留

70: 控制通道选择

通过端子选择两组自定义命令通道,0选择通道1,1选择通道2。

71: 设定通道选择(保留)

72: 端子模块A/B选择

提供两组端子模块参数配置,0选择模块A,1选择模块B。

73~74: 启动选择选择BIT0/BIT1

选择启动方式。例如设置DI1和DI2的功能分别为73和74,则DI1和DI2都无效时选择直接启动; DI1有效,DI2无效时选择转速追踪启动; DI1无效,DI2有效时选择直流制动启动; DI1和DI2都有效时,启动方式则保持上一次选择的启动方式。

75: 控制命令切换端子3

在端子/通信设定和自定义运行指令之间进行切换。

77: 运行使能

端子选择此功能,高电平有效时,允许运行,否则,不允许运行或者按照运行允许停机方 式(AA-09)停机。

78:正向运行允许

端子功能高电平有效时,频率给定允许为正值,否则,给定为正时置零。

79: 负向运行允许

端子功能高电平有效时,频率给定允许为负值,否则,给定为负时置零。

80: RFG输入置零

端子功能低电平有效时,目标给定置零,高电平无效时,恢复原有给定。

86: 断线检测(拉丝机)

变频器启动时,经过A7-32(启动延时断线检测时间)之后,DI开始检测,若DI端子检测到 有效,变频器会报E31.2断线检测故障。

2.2.22DO设置(可选)

参数	参数名称	默认值	设定	范围	参数说明
F5-04	DO1输出功能选择	0	0: 无输出	23:零速运行中2(停机ON)	如下
F5-05	扩展卡DO2输出选	4	1: 变频器运行中	24: 累计上电时间到达	
	择		2: 故障输出	25:频率水平检测FDT2输出	
			3:频率水平检测FDT1输出	26: 频率1到达输出	
			4:频率到达	27: 频率2到达输出	
			5:零速运行中(停机OFF)	28: 电流1到达输出	
			6: 电机过载预报警	29: 电流2到达输出	
			7: 变频器过载预报警	30: 定时到达输出	
			8: 设定计数值到达	31: Al1输入超限	
			9: 指定计数值到达	32: 掉载中	
			10: 长度到达	33:反向运行中	
			11: 简易PLC循环完成	34:零电流状态	
			12: 累计运行时间到达	35: 模块温度到达	
			13: 摆动频率限定中	36: 输出电流超限	
			14: 转矩限定中	37: 下限频率到达(停机ON)	
			15: 运行准备就绪	38:告警输出(所有故障)	
			16: AI1>AI2	39: 电机过温输出	
			17: 上限频率到达	40:本次运行时间到达	
			18: 下限频率到达(停机OFF)	41:故障(除欠压外)输出	
			19: 欠压状态输出	42: STO输出	
			20:通讯设定	43:限制运行输出	
			21: 抱闸输出	44:停机抱闸输出(拉丝机)	
			22: 保留	其他: B连接器	

设置集电极开路输出端子(FMR)的端子功能。

0:无输出

输出端子无任何功能。

1: 变频器运行中

变频器正处于运行状态,有输出频率(可以为零),此时输出"有效"信号。

2: 故障输出

当变频器故障停机时,输出"有效"信号。

3:频率水平检测FDT1输出

当运行频率高于频率检测值时,DO输出"有效"信号,当运行频率低于检测值减去FDT滞 后值(F8-19设定值与F8-20的乘积),DO输出"有效"信号取消。

4: 频率到达

变频器的运行频率,处于目标频率一定范围内(目标频率±F8-21 的设定值与最大频率的乘 积),DO 输出"有效"信号。

5:零速运行中(停机OFF)

变频器运行且输出频率为0 时,输出"有效"信号。在变频器处于停机状态时,该信号"无效"。

6: 电机过载预报警

电机过载保护动作之前,根据过载预警系数(F9-02)进行判断,在超过预报警阈值后输 出"有效"信号。(预报警阈值的计算参照电机过载保护功能)。

7: 变频器过载预报警

在变频器过载保护发生前10s,输出"有效"信号。

8: 设定计数值到达

在计数功能中,当计数值达到FB-08 所设定的值时,输出"有效"信号。

9: 指定计数值到达

在计数功能中,当计数值达到FB-09 所设定的值时,输出"有效"信号。

10: 长度到达

在定长功能中,当检测的实际长度超过FB-05 所设定的长度时,输出"有效"信号。

11: 简易PLC循环完成

当简易PLC 运行完成一个循环后,输出一个宽度为250ms 的脉冲信号。

12: 累计运行时间到达

变频器累计运行时间超过F8-17(设定累计上电到达时间)所设定时间时,输出"有效"信 号。

13: 摆动频率限定中

在摆频功能中,当设定频率超出上限频率或者下限频率,且变频器输出频率达到上限频率 或者下限频率时,输出"有效"信号。

14: 转矩限定中

变频器在速度控制模式下,当输出转矩达到转矩限定值时,输出"有效"信号。

15: 运行准备就绪

变频器上电后,处于无异常状态时,输出"有效"信号。

16: AI1>AI2

当模拟量输入Al1 的值大于Al2 的输入值时,输出"有效"信号。

17: 上限频率到达

当运行频率到达上限频率(F0-12)时,输出"有效"信号。

18: 下限频率到达(停机OFF)

当F8-14(给定频率低于下限频率运行模式)设置为1(停机)时,无论运行频率是否到达 下限频率,都输出"无效"信号。

当F8-14(给定频率低于下限频率运行模式)设置为0(以下限频率运行)或者2(零速运行)时,且运行频率到达下限频率时,输出"有效"信号。

19: 欠压状态输出

变频器处于欠压状态时,输出"有效"信号。

20: 通讯设定

端子"有效"或者"无效"状态由通讯地址0x2001的设定值控制。

21: 保留

22: 保留

23: 零速运行中2(停机ON)

变频器运行且输出频率为0 时,输出"有效"信号。在变频器处于停机状态时,该信号也为"有效"。

24: 累计上电时间到达

变频器累计上电时间(F7-13)超过F8-16(设定累计上电到达时间)所设定时间时,输出"有效"信号。

25: 频率水平检测FDT2输出

当运行频率高于频率检测值时,DO输出"有效"信号,当运行频率低于检测值减去频率检测滞后值(F8-28设定值与F8-29的乘积),DO输出"有效"信号取消。

26: 频率1到达输出

变频器的运行频率,处于F8-30(任意到达频率检测值1)频率检出范围内,DO 输出"有效"信号。频率检出范围: F8-30-F8-31×F0-10(最大频率)~F8-30+F8-31×F0-10。

27: 频率2到达输出

变频器的运行频率,处于F8-32(任意到达频率检测值2)频率检出范围内,DO输出"有效"信号。频率检出范围:F8-32-F8-33×F0-10(最大频率到)~F8-32+F8-33×F0-10。

28: 电流1到达输出

变频器的输出电流,处于F8-38(任意到达电流1)电流的范围内,DO 输出"有效"信号。 电流检出范围 = F8-38-F8-39×F1-03(电机额定电流)~F8-38+F8-39×F1-03。

29: 电流2到达输出

变频器的输出电流,处于F8-40(任意到达电流2)电流的范围内,DO 输出"有效"信号。 电流检出范围 = F8-40-F8-41×F1-03(电机额定电流)~ F8-40+F8-41×F1-03。

30: 定时到达输出

当定时功能选择(F8-42)有效时,变频器本次运行时间达到所设置的定时时间后,输出" 有效"信号。定时时间由F8-43 和F8-44 设置。

31: AI1输入超限

当模拟量输入AI1 的值大于F8-46(AI1 输入保护上限) 或小于F8-45(AI1 输入保护下限) 时, 输出"有效"信号。

32: 掉载中

变频器处于掉载状态时,输出"有效"信号。

33: 反向运行中

变频器处于反向运行时,输出"有效"信号。

34:零电流状态

变频器的输出电流,处于零电流的范围内,且持续时间超过F8-35(零电流检测延迟时间) 后,DO输出"有效"信号。零电流检出范围=0~F8-34×F1-03。

35: 模块温度到达

逆变模块散热器温度(F7-07)达到所设置的模块温度到达值(F8-47)时,输出"有效" 信号。

36: 输出电流超限

变频器的输出电流,大于F8-36(输出电流超限值),且持续时间超过F8-37(输出电流超限检测延迟时间)后,DO输出"有效"信号。

37: 下限频率到达(停机ON)

当运行频率到达下限频率(F0-14)时,输出"有效"信号。在停机状态时,也输出"有效"信号。

38:告警输出(所有故障)

当变频器发生故障,且该故障保护动作选择为继续运行时,DO 端子输出"有效"信号。故 障保护动作选择可以参照F9-47~F9-50。

39: 电机过温输出

当电机温度达到F9-58(电机过热预报警阈值)时,输出"有效"信号。(电机温度可通过 U0-34 查看)。

40:本次运行时间到达

变频器本次开始运行时间超过F8-53(本次运行到达时间设定)所设定的时间时,输出"有效"信号。

41: 故障(除欠压外)输出

当变频器发生故障时(除了欠压故障之外), DO 输出"有效"信号。

42: STO输出

当变频器触发STO时,DO输出"有效"信号。

43: 限制运行输出

当变频器产生限制运行轻故障时,变频器面板显示 "LXXX.XX",DO输出有效信号。

44:停机抱闸输出(拉丝机)

变频器停机时,当运行频率低于A7-30设置的抱闸频率时,DO输出有效信号,但并经过A7-31设置的抱闸延时时间之后,DO输出无效信号。

其他: B连接器

2.2.23设置多段速指令(可选)

参数	参数名称	默认值	设定范围	参数说明
FC-00	多段指令0	0.0%	-100.0%~100.0%	各多段速的频率指令,FC-00~FC-15对应0~15段共16个频率设定
FC-01	多段指令1			值,该频率设定值是以相对最大频率的百分比计算,不是频率数值
FC-02	多段指令2			,100% 对应最大频率F0-10。变频器提供4个多段指令端子,组合
FC-03	多段指令3			成16种状态,这16个状态对应这16个频率设定值。
FC-04	多段指令4			FC组参数应用功素: 当需要使用间易PLC作为主频率时,请设置FC 组会数 在一些工业场合 使用态流电机口需实现户信 完时分段
FC-05	多段指令5			调速及简单的自动正反转等功能,使用简易PLC便可完成以往还需
FC-06	多段指令6			添加PLC后才能完成的控制功能。简易PLC一般应用于混合料搅
FC-07	多段指令7			拌、工业洗衣机等行业设备。
FC-08	多段指令8			FC组参数与其他参数的关联关系:设定参数F0-03=7,选择了简易
FC-09	多段指令9			PLC 作为主频率时,需要设置FC组参数。
FC-10	多段指令10			
FC-11	多段指令11			
FC-12	多段指令12			
FC-13	多段指令13			
FC-14	多段指令14	1		
FC-15	多段指令15			

2.2.24设置继电器输出(可选)

参数	参数名称	默认	设定范围		参数说明
		值			
F5-02	控制板继电器(T/A-T/B-T/	2	0:无输出		
	C)输出功能选择		1: 变频器运行中	24:累计上电时间到达	
F5-03	扩展卡继电器DO4输出功能	0	2: 故障输出	25: 频率水平检测FDT2输出	
	选择(P/A-P/B-P/C)		3:频率水平检测FDT1输出	26: 频率1到达输出	
			4:频率到达	27:频率2到达输出	
			5:零速运行中(停机OFF)	28: 电流1到达输出	
			6: 电机过载预报警	29: 电流2到达输出	
			7: 变频器过载预报警	30: 定时到达输出	
			8: 设定计数值到达	31: Al1输入超限	
			9: 指定计数值到达	32: 掉载中	
			10: 长度到达	33:反向运行中	
			11: 简易PLC循环完成	34: 零电流状态	hn 75
			12: 累计运行时间到达	35: 模块温度到达	XL 1'
			13: 摆动频率限定中	36: 输出电流超限	
			14: 转矩限定中	37: 下限频率到达(停机ON)	
			15: 运行准备就绪	38: 告警输出(所有故障)	
			16: AI1>AI2	39: 电机过温输出	
			17: 上限频率到达	40:本次运行时间到达	
			18: 下限频率到达(停机OFF)	41:故障(除欠压外)输出	
			19: 欠压状态输出	42: STO输出	
			20:通讯设定	43:限制运行输出	
			21: 抱闸输出	44:停机抱闸输出(拉丝机)	
			22: 保留	其他: B连接器	
			23:零速运行中2(停机ON)		

设置集电极开路输出端子(FMR)的端子功能。

0: 无输出

输出端子无任何功能。

1: 变频器运行中

变频器正处于运行状态,有输出频率(可以为零),此时输出"有效"信号。

2: 故障输出

当变频器故障停机时,输出"有效"信号。

3:频率水平检测FDT1输出

当运行频率高于频率检测值时,DO 输出"有效"信号,当运行频率低于检测值减去FDT 滞 后值(F8-19 设定值与F8-20 的乘积),DO 输出"有效"信号取消。

4: 频率到达

变频器的运行频率,处于目标频率一定范围内(目标频率±F8-21 的设定值与最大频率的乘 积),DO 输出"有效"信号。

5:零速运行中(停机OFF)

变频器运行且输出频率为0 时,输出"有效"信号。在变频器处于停机状态时,该信号"无 效"。

6: 电机过载预报警

电机过载保护动作之前,根据过载预警系数(F9-02)进行判断,在超过预报警阈值后输 出"有效"信号。(预报警阈值的计算参照电机过载保护功能)。

7: 变频器过载预报警

在变频器过载保护发生前10s,输出"有效"信号。

8: 设定计数值到达

在计数功能中,当计数值达到FB-08 所设定的值时,输出"有效"信号。

9: 指定计数值到达

在计数功能中,当计数值达到FB-09 所设定的值时,输出"有效"信号。

10: 长度到达

在定长功能中,当检测的实际长度超过FB-05 所设定的长度时,输出"有效"信号。

11: 简易PLC循环完成

当简易PLC 运行完成一个循环后,输出一个宽度为250ms 的脉冲信号。

12: 累计运行时间到达

变频器累计运行时间超过F8-17(设定累计上电到达时间)所设定时间时,输出"有效"信 号。

13: 摆动频率限定中

在摆频功能中,当设定频率超出上限频率或者下限频率,且变频器输出频率达到上限频率 或者下限频率时,输出"有效"信号。

14: 转矩限定中

变频器在速度控制模式下,当输出转矩达到转矩限定值时,输出"有效"信号。

15: 运行准备就绪

变频器上电后,处于无异常状态时,输出"有效"信号。

16: AI1>AI2

当模拟量输入AI1 的值大于AI2 的输入值时,输出"有效"信号。

17: 上限频率到达

当运行频率到达上限频率(F0-12)时,输出"有效"信号。

18: 下限频率到达(停机OFF)

当F8-14(给定频率低于下限频率运行模式)设置为1(停机)时,无论运行频率是否到达 下限频率,都输出"无效"信号。

当F8-14(给定频率低于下限频率运行模式)设置为0(以下限频率运行)或者2(零速运行)时,且运行频率到达下限频率时,输出"有效"信号。

19: 欠压状态输出

变频器处于欠压状态时,输出"有效"信号。

20: 通讯设定

端子"有效"或者"无效"状态由通讯地址0x2001的设定值控制。

21: 保留

22: 保留

23: 零速运行中2(停机ON)

变频器运行且输出频率为0 时,输出"有效"信号。在变频器处于停机状态时,该信号也 为"有效"。

24: 累计上电时间到达

变频器累计上电时间(F7-13)超过F8-16(设定累计上电到达时间)所设定时间时,输 出"有效"信号。

25: 频率水平检测FDT2输出

当运行频率高于频率检测值时,DO输出"有效"信号,当运行频率低于检测值减去频率检测滞后值(F8-28设定值与F8-29的乘积),DO输出"有效"信号取消。

26: 频率1到达输出

变频器的运行频率,处于F8-30(任意到达频率检测值1)频率检出范围内,DO输出"有效"信号。频率检出范围:F8-30-F8-31×F0-10(最大频率)~F8-30+F8-31×F0-10。

27: 频率2到达输出

变频器的运行频率,处于F8-32(任意到达频率检测值2)频率检出范围内,DO 输出"有效"信号。频率检出范围:F8-32-F8-33×F0-10(最大频率到)~F8-32+F8-33×F0-10。

28: 电流1到达输出

变频器的输出电流,处于F8-38(任意到达电流1)电流的范围内,DO输出"有效"信号。 电流检出范围 = F8-38-F8-39×F1-03(电机额定电流)~F8-38+F8-39×F1-03。

29: 电流2到达输出

变频器的输出电流,处于F8-40(任意到达电流2)电流的范围内,DO输出"有效"信号。 电流检出范围 = F8-40-F8-41×F1-03(电机额定电流)~F8-40+F8-41×F1-03。

30: 定时到达输出

当定时功能选择(F8-42)有效时,变频器本次运行时间达到所设置的定时时间后,输出" 有效"信号。定时时间由F8-43 和F8-44 设置。

31: AI1输入超限

当模拟量输入Al1的值大于F8-46(Al1输入保护上限)或小于F8-45(Al1输入保护下限)时,输出"有效"信号。

32: 掉载中

变频器处于掉载状态时,输出"有效"信号。

33: 反向运行中

变频器处于反向运行时,输出"有效"信号。

34:零电流状态

变频器的输出电流,处于零电流的范围内,且持续时间超过F8-35(零电流检测延迟时间) 后,DO 输出"有效"信号。零电流检出范围=0~F8-34×F1-03。

35: 模块温度到达

逆变模块散热器温度(F7-07)达到所设置的模块温度到达值(F8-47)时,输出"有效" 信号。

36: 输出电流超限

变频器的输出电流,大于F8-36(输出电流超限值),且持续时间超过F8-37(输出电流超限检测延迟时间)后,DO输出"有效"信号。

37: 下限频率到达(停机ON)

当运行频率到达下限频率(F0-14)时,输出"有效"信号。在停机状态时,也输出"有效"信号。

38:告警输出(所有故障)

当变频器发生故障,且该故障保护动作选择为继续运行时,DO 端子输出"有效"信号。故 障保护动作选择可以参照F9-47~F9-50。

39: 电机过温输出

当电机温度达到F9-58(电机过热预报警阈值)时,输出"有效"信号。(电机温度可通过 U0-34 查看)。

40:本次运行时间到达

变频器本次开始运行时间超过F8-53(本次运行到达时间设定)所设定的时间时,输出"有效"信号。

41: 故障(除欠压外)输出

当变频器发生故障时(除了欠压故障之外), DO 输出"有效"信号。

42: STO输出

当变频器触发STO时,DO输出"有效"信号。

43: 限制运行输出

当变频器产生限制运行轻故障时,变频器面板显示 "LXXX.XX",DO输出有效信号。

44: 停机抱闸输出(拉丝机)

变频器停机时,当运行频率低于A7-30设置的抱闸频率时,DO输出有效信号,但并经过A7-31设置的抱闸延时时间之后,DO输出无效信号。

其他: B连接器

2.3 功能调试

2.3.1 PMVVC功能调试(仅适应于同步机)

调试流程图

图2-6 PMVVC控制模式调试流程图

-69-

调试步骤

1. 设置控制方式为VF(F0-01=2),设置电机类型为永磁同步电动机(F1-00=2).

2. 设置F1-01~F1-05相关电机参数.

3. 设置F1-37调谐(空载动态调谐选择12,静态调谐选择11).

4. 调谐完毕后,设置空载试运行.

5. 对低速启动负载有需求的可以手动设置F3-01转矩提升。

相关参数

参数	名称	默认值	设定范围	设定值
F0-01	第1电机控制方 式	0	0: SVC 1: FVC 2: VF	0
F1-00	电机类型选择	0	0: 普通异步电机 1: 变频异步电机 2: 同步机	0
F1-01	电机额定功率	机型确定	0.1kW~1000.0kW	机型确定
F1-02	电机额定电压	机型确定	1V~2000V	机型确定
F1-03	电机额定电流	机型确定	0: 普通异步电机 1: 变频异步电机 2: 永磁同步电机 3: 无助磁磁阻电机 4: 电磁线圈	机型确定
F1-04	电机额定频率	机型确定	0.01Hz~F0-10	机型确定
F1-05	电机额定转速	机型确定	1rpm~65535rpm	机型确定
F1-37	调谐选择	0	 C: 无操纵 1: 异步机静止部分调谐 2: 异步机动态调谐 3: 异步机静止完整调谐 4: 惯量辨识 5: 死区辨识 11: 同步机带载调谐(不辨反电动势) 12: 同步机动态空载调谐 13: 同步机带载旋转调谐(不调零点角度) 14: UV增益相间偏差辨识 15: 磁阻电机MTPA制表 	0

3 故障处理

3.1 常用故障及诊断

3.1.1 报警与故障显示

变频器状态异常时,会切断输出,同时故障指示灯闪烁,且变频器故障继电器接点动作。 变频器操作面板会显示故障代码,如**上口口之**,,界面故障显示如下图所示。

图3-1 界面故障显示

请勿擅自修理、改造本产品,若无法排除故障,请联系汇川技术或产品代理商寻求技术支持。

3.1.2 故障发生后再启动

通过操作面板显示查看当前故障码、当前故障子码、当前故障信息、当前轻故障主码、当 前轻故障子码、轻故障信息、当前警告码、当前警告子码、当前警告信息。
阶段	处理措施	说明
故障时	故障记录1:通过操作面板显示查看当前故障码、	通过H0-00~H0-53可查看
	当前故障子码、当前故障信息、当前轻故障主	
	码、当前轻故障子码、轻故障信息、当前警告	
	码、当前警告子码、当前警告信息。	
	故障记录2:通过操作面板显示查看最近三次的故	通过F9-14~F9-44可查看。
	障时频率、故障时电流、故障时母线电压、故障	
	时输入端子状态、故障时输出端子状态、故障时	
	变频器状态、故障时上电时间、故障时运行时	
	间、故障时状态字A、故障升级状态字B、故障时	
	命令字。	
	故障记录3:通过操作面板显示查看最近六次的故	通过通过H3~H8组可查看。
	障码、故障子码、故障信息、故障时频率、故障	
	时电流、故障时母线电压、故障时输入端子状	
	态、故障时输出端子状态、故障时变频器状态、	
	故障时上电时间、故障时运行时间、故障时状态	
	字A、故障升级状态字B、故障时命令字。	
故障复位前	从操作面板显示的故障类型上查找故障原因并解	-
	除故障,解除故障原因后再复位。	

表3-1 故障发生后再启动方法

阶段	处理措施	说明
解除故障复位方法	1、将DI设定为功能9(F4-00~F4-09=9 故障复位),复位功能端子有效。	ぞうでで変類器 ^{故障复位} ・ ・ ・ COM
	2、确认F7-02=1(出厂值),表示在任何操作方 式下,键停机复位功能均有效。	按面板红色停机复位键。
	3、给变频器重新上电后自动复位。 暂时将主回路电源切断,待操作面板上的显示消 失后再次接通电源。	♦ ON ♥ OFF
	4、使用通讯功能的可通过通讯方式复位。 在F0-02=2(通讯控制)时,通过上位机对2000H 通讯地址写入"7"(故障复位),可使变频器在 故障清除后进行复位。	

3.1.3 常见故障处理

序号	故障现象	可能原因	解决方法
1	上电无显示	电网电压没有或者过低	检查输入电源
		变频器驱动板上的开关电 源故障	检查控制板上24V和10V输出电压是 否正常
		控制板与驱动板、键盘之 间连线断	重新拔插8芯和40芯排线
		变频器缓冲电阻损坏	寻求厂家服务
		控制板、键盘故障	
		整流桥损坏	
2	上电一直显示-H-C-	驱动板与控制板之间的连 线接触不良	重新拔插8芯和28芯排线
	-H-C-	控制板上相关器件损坏	寻求厂家服务
		电机或者电机线有对地短 路	
		霍尔故障	
		电网电压过低	
3	上电显示	电机或者输出线对地短路	用摇表测量电机和输出线的绝缘
	"E023.1"报警	变频器损坏	寻求厂家服务
1.6203			
4	上电变频器显示正	风扇损坏或者堵转	更换风扇
常,运行后显示 "-H-C-"并马上停 机 -H-C-	外围控制端子接线有短路	排除外部短路故障	
5	频繁报E014.1(模	载频设置太高	降低载频(F0-15)
	块过热)故障	风扇损坏或者风道堵塞	更换风扇、清理风道
		变频器内部器件损坏(热 敏电阻或其他)	寻求厂家服务

表3-2 常见故障及处理方法	
----------------	--

序号	故障现象	可能原因	解决方法
6	变频器及电机之间连线错 误	重新确认变频器与电机之间连线正 确	
		变频器参数设置错误(电 机参数)	恢复出厂参数,重新设置使用参数 组
			检查编码器参数设置正确、电机额 定参数设置正确,如电机额定频 率、额定转速等
			检查F0-01(控制方式)、F0-02(运行方式)、设置正确
			V/f模式下,重载起动下,调整F3- 01(转矩提升)参数
		驱动板与控制板连线接触 不良	重新拔插连接线吗,确认接线牢固
		驱动板故障	寻求厂家服务
7	DI端子失效	参数设置错误	检查并重新设置F4组相关参数
		外部信号错误	重新接外部信号线
		OP与+24V跳线松动	重新确认OP与+24V跳线,并确保紧 固
		控制板故障	寻求厂家服务
8	闭环矢量控制时,	编码器故障	更换码盘并重新确认接线
1	电机速度无法提升	编码器接错线或者接触不 良	重新接线,确保接触良好
		PG卡故障	更换PG卡
		驱动板故障	寻求厂家服务
9 妥	变频器频繁报过流 和过压故障。	电机参数设置不对	重新设置电机参数或者进行电机调 谐
		加减速时间不合适	设置合适的加减速时间
		负载波动	寻求厂家服务
10	上电(或运行)报 E017.1	或运行)报 软启动接触器未吸合	检查接触器电缆是否松动
			检查接触器是否有故障
			检查接触器24V供电电源是否有故 障
			寻求厂家服务
11 减速或减 电机自由 制动能力	减速或减速停车时 电机自由停车或无	编码器断线或过压失速保 护生效	有速度传感器矢量控制模式下时 (F0-01=1),请检查编码器接线
	制动能力		如果已配置制动电阻,需将"过压 失速使能"选择为"无效"(设置 F3-23=0),关闭过压失速

3.1.4 不同控制模式下试运行处理对策

● 开环矢量控制模式(F0-01=0,出厂默认值)

该控制模式是在电机没有编码器速度反馈的应用场合下,对电机的速度和转矩进行控制。该控制模式下需要对电机参数进行自学习,完成电机参数的自动整定。

问题与故障	处理对策	
电机启动过程中报过载或过 流故障	电机参数(F1-01~F1-05)按电机铭牌设定。 进行电机参数调谐(F1-37),有条件的情况下最好进行电机动 态完整调谐。	
5Hz以下转矩或速度响应慢、 电机震动	改善转矩和速度的响应,需要加强速度环比例调节(F2-00按10 为单位增大设定值)或者降低速度环积分时间(F2-01按0.05为 单位降低); 如果出现震动,需要减弱F2-00、增大F2-01参数值。	
5Hz以上转矩或速度响应慢、 电机震动。	改善转矩和速度的响应,需要加强速度环比例调节(F2-03按10 为单位增大设定值)或者降低速度环积分时间(F2-04按0.05为 单位降低); 如果出现震动,需要减弱F2-03、增大F2-04参数值。	
速度精度低	当电机带载速度偏差过大时,需增大矢量转差补偿增益(F2- 06),按10%为单位增减。	
速度波动大	当电机速度有异常波动时,可适当增加速度滤波时间(A9- 05),按0.001s为单位增加。	
电机噪音大	适当增加载频频率值(F0-15),以1.0kHz为单位升高。(注意 : 升高载频电机漏电流会增大)	
电机转矩不足或出力不够	转矩上限是否被限制,速度模式下提高转矩上限(F2-10);转 矩模式下增大转矩指令。	

• 闭环矢量控制模式(F0-01=1)

该模式是在电机有编码器速度反馈应用场合下使用,需要正确设置编码器线数、编码器 类型和信号方向,完成电机参数的自动整定。

问题与故障	处理对策	
起动报过流或过载故障	正确设置编码器线数、类型、编码器方向。	
电机转动过程中报过载或过 流故障	电机参数(F1-01~F1-05)按电机铭牌设定。 进行电机参数调谐(F1-37),有条件的情况下最好进行电机动 态完整调谐。	
5Hz以下转矩或速度响应慢、 电机震动	改善转矩和速度的响应,需要加强速度环比例调节(F2-00按10 为单位增大设定值)或者降低速度环积分时间(F2-01按0.05为 单位降低)。 如果出现震动,需要减弱该F2-00、F2-01参数值。	
5Hz以上转矩或速度响应慢、 电机震动。	改善转矩和速度的响应,需要加强速度环比例调节(F2-03按10 为单位增大设定值)或者降低速度环积分时间(F2-04按0.05为 单位降低)。 如果出现震动,需要减弱该F2-03、F2-04参数值。	
速度波动大	当电机速度有异常波动时,可适当增加速度滤波时间(F2- 07),按0.001s为单位增加。	

表3-4 闭环矢量控制模式下处理对策

问题与故障	处理对策
电机噪音大	适当增加载频频率值(F0-15),以1.0kHz为单位升高(注意: 升高载频电机漏电流会增大)。
电机转矩不足或出力不够	转矩上限是否被限制,速度模式下提高转矩上限(F2-10);转 矩模式下增大转矩指令。

 V/f控制模式(F0-01=2)
 该种模式是在电机没有编码器速度反馈的应用场合下使用,对电机参数不敏感,只需要 正确设置电机的额定电压和额定频率值。

问题与故障	处理对策
运行中电机震荡	减少V/f震荡抑制增益(F3-11),以5为单位减少(最小减少到 5)。
大功率起动报过流	降低转矩提升(F3-01),以0.5%为单位调节。
运行中电流偏大	正确设置电机的额定电压(F1-02)、额定频率(F1-04); 降低转矩提升(F3-01),以0.5%为单位调节。
电机噪音大	适当增加载频频率值(F0-15),以1.0kHz为单位升高。(注意 : 升高载频电机漏电流会增大)
突卸重载报过压、减速报过 压	确认过压失速使能(F3-23)设定成使能状态;增大过压失速增益(F3-24/F3-25,出厂30),以10为单位增大(最大调整到100)。 减小过压失速动作电压(F3-22出厂770V),以10V为单位减小 (最小调整到700V)。
突加重载报过流、加速报过 流	增大过流失速增益(F3-20出厂20),以10为单位增大(最大调整到100)。 减小过流失速动作电流(F3-18出厂150%),以10%为单位减小 (最小调整到50%)。

表3-5 V/f控制模式下处理对策

3.2 故障和报警码列表

故障和报警码的完整信息,请参见19012396《MD520系列通用变频器参数手册》

19011571B01

由于本公司持续的产品升级造成的内容变更,恕不另行通知 版权所有 © 深圳市汇川技术股份有限公司 Copyright © Shenzhen Inovance Technology Co., Ltd.

深圳市汇川技术股份有限公司 Shenzhen Inovance Technology Co., Ltd.

www.inovance.com

苏州汇川技术有限公司

Suzhou Inovance Technology Co., Ltd.

www.inovance.com

 地址:深圳市龙华新区观澜街道高新技术产业园 汇川技术总部大厦
 总机:(0755)29799595
 传真:(0755)29619897
 客服:4000-300124

地址: 苏州市吴中区越溪友翔路16号

- 总机: (0512) 6637 6666 传真: (0512) 6285 6720
- 客服: 4000-300124